
Federal State Autonomous Educational Institution of Higher Education "Moscow
 Institute of Physics and Technology

(National Research University)"

APPROVED
Head of the Phystech School of
Applied Mathematics and
Informatics

A.M. Raygorodskiy

Work program of the course (training module)
course: Constraint Programming/Программирование в ограничениях
major: Information Science and Computer Engineering
specialization: Computer Science/Информатика

Phystech School of Applied Mathematics and Informatics
Chair of Discrete Mathematics

term: 2
qualification: Bachelor

Semester, form of interim assessment: 4 (spring) - Grading test

Academic hours: 60 АН in total, including:
lectures: 0 АН.
seminars: 60 АН.
laboratory practical: 0 АН.

Independent work: 75 АН.

In total: 135 AH, credits in total: 3

Author of the program: A.B. Daynyak, candidate of physics and mathematical sciences, associate
professor, associate professor

The program was discussed at the Chair of Discrete Mathematics 05.03.2020

Annotation
The course is devoted to one of the modern programming paradigms that has common flavour to functional
and logical programming, and often eludes the standard computer science curriculum, yet is highly practical
and beneficial for the applied mathematical culture of the students: the Constraint Programming (CP). In
constraint programming, unlike the ubiquitous imperative programming, instead of describing the sequence of
elementary operations needed to get a desired result (object/configuration), we rather describe the set of
elementary constraints — the properties that the object should have to be called the result. Constructing of the
configuration that meets all the requirements is then left to a special program called solver (analogous to
interpreter in imperative programming). The programmer who is working in CP paradigm does not usually
have direct control over the time complexity of the computation, but there are many standard proven
techniques that improve the efficiency of the programs (models as they are called in CP) by orders of
magnitude. The course is aimed at familiarizing the students with these tools, and it often implies some
non-trivial mathematical reasoning. For practicing working in CP paradigm we use one of the standard
modern languages MiniZinc.

1. Study objective

Purpose of the course
The course is devoted to Constraint Programming (CP) - a discipline lying at the junction of
mathematical modeling and computer programming, which can be considered a separate programming
paradigm, close to logical and functional programming and clearly different from the most common
imperative programming paradigm. Instead of describing elementary operations leading to the
achievement of the result, that is, some object / configuration.
The main task in CP is to describe what elementary conditions an object must satisfy in order to be
considered a result.

Tasks of the course
The course is designed to provide an opportunity to practice modeling simplified and real discrete
optimization problems in one of the standard modern CP-languages MiniZinc.

2. List of the planned results of the course (training module), correlated with the planned results of the
mastering the educational program

Mastering the discipline is aimed at the formation of the following competencies:
Code and the name of the competence Competency indicators

Gen.Pro.C-2 Use modern IT and software tools
to perform professional tasks in compliance
with information security requirements

Gen.Pro.C-2.2 Apply numerical mathematical methods and
use software applications for scientific problem-solving in
professional settings
Gen.Pro.C-2.1 Apply modern computing tools and Internet
services in professional settings
Gen.Pro.C-2.3 Fulfill basic information security
requirements

Pro.C-1 Assign, formalize, and solve tasks,
develop and research mathematical models of
the studied phenomena and processes,
systematically analyze scientific problems,
obtain new scientific outcomes

Pro.C-1.1 Locate, analyze, and summarize information on
current research findings within the subject area
Pro.C-1.2 Make hypotheses, build mathematical models of
the studied phenomena and processes, evaluate the quality
of the developed model
Pro.C-1.3 Apply theoretical and/or experimental research
methods to a specific scientific task and interpret the
obtained results

Pro.C-2 Conduct scientific research and testing
independently or as a member (leader) of a
small research team

Pro.C-2.1 Apply the principles of scientific work, methods
of collecting and analyzing the obtained data and ways of
argumentation
Pro.C-2.2 Conduct scientific research independently or as a
member (leader) of a small research team
Pro.C-2.3 Present research results through scientific
publications and participation in conferences

3. List of the planned results of the course (training module)
As a result of studying the course the student should:
know:

- in CP, the main task is to describe what elementary conditions an object must satisfy in order to be
considered a result.

be able to:
- simulation of simplified and real discrete optimization problems in one of the standard modern
CP-languages MiniZinc.

master:
- basic syntax of the MiniZinc language. Definition of variables and constants. Arrays. Model + data.
Limitations. Output format.

4. Content of the course (training module), structured by topics (sections), indicating the number of
allocated academic hours and types of training sessions

4.1. The sections of the course (training module) and the complexity of the types of training sessions

№ Topic (section) of the course

Types of training sessions, including independent work

Lectures Seminars Laboratory
practical

Independent
work

1 Constraint programming: its differences
with imperative programming. 8 9

2
Terminology and mathematical
formalization of constraint satisfaction
and optimization.

8 9

3 MiniZinc and FlatZinc syntax basics. 7 8

4 Types of solvers: CP solvers, MILP
solvers. 6 8

5 Global constraints 5 8

6 Linear Programming as a modeling tool
and mathematical subject 8 9

7 Symmetries of the search space. Breaking
symmetries. 8 8

8 Search mechanics of CP solvers. 5 8
9 Industrial tools for CP and optimization. 5 8
AH in total 60 75

Exam preparation 0 AH.

Total complexity 135 AH., credits in total 3

4.2. Content of the course (training module), structured by topics (sections)

Semester: 4 (Spring)

1. Constraint programming: its differences with imperative programming.

Models vs. programs, solvers vs. interpreters, constraints vs. commands/instructions, quantifiers vs.
loops, etc.

2. Terminology and mathematical formalization of constraint satisfaction and optimization.

Feasible solutions, optimal solutions. Search space. Reduction of optimization to constraint
satisfaction.

3. MiniZinc and FlatZinc syntax basics.

Variable and constant definitions. Models and data files. Constraints. Output statements.

4. Types of solvers: CP solvers, MILP solvers.

Their strengths and limitations. Examples of the same problem modelled differently for CP vs MILP
solvers based on N-Queens problem.

5. Global constraints

Alldifferent, increasing and other typical global constraints. Implementation of alldifferent
constraint.

6. Linear Programming as a modeling tool and mathematical subject

Modeling logical constraints with linear constraints and integer variables. Duality in linear
programming. Duality as certifiability.

7. Symmetries of the search space. Breaking symmetries.

Symmetry breaking constraints vs. redundant constraints.

8. Search mechanics of CP solvers.

Variable choice and value choice. Restarts. Search annotations.

9. Industrial tools for CP and optimization.

Google OR tools. Interfacing with Python. Practice of constraint programming.

5. Description of the material and technical facilities that are necessary for the implementation of the
educational process of the course (training module)

The classroom is equipped with personal computers, a multimedia projector and a screen.

6. List of the main and additional literature, that is necessary for the course (training module)
mastering

Main literature
1. MATLAB 7 [Текст] : программирование, численные методы / Ю. Л. Кетков, А. Ю. Кетков, М.
М. Шульц .— СПб. : БХВ-Петербург, 2005 .— 737 с.
2. Линейное программирование [Текст] / Ф. П. Васильев, А. Ю. Иваницкий - М.Факториал
Пресс,2008

Additional literature
1. MATLAB 7 [Текст] : в подлиннике : наиболее полное руководство / И. Е. Ануфриев, А. Б.
Смирнов, Е. Н. Смирнова .— СПб. : БХВ-Петербург, 2005 .— 1104 с.

7. List of web resources that are necessary for the course (training module) mastering

http://www.mou.mipt.ru
http://www.exponenta.ru/educat/free/matlab/gs.pdf

8. List of information technologies used for implementation of the educational process, including a list
of software and information reference systems (if necessary)

The classes use multimedia technologies, including demonstration of presentations, as well as the
MiniZinc CP language software development tool.

9. Guidelines for students to master the course

1. It is recommended to successfully pass test papers, as this simplifies the final certification in the
subject.
2. To prepare for the final certification in the subject, it is best to use the lecture materials.

SUPPLEMENT

Assessment funds for course (training module)

major: Information Science and Computer Engineering
specialization: Computer Science/Информатика

Phystech School of Applied Mathematics and Informatics
Chair of Discrete Mathematics

term: 2
qualification: Bachelor

Semester, form of interim assessment: 4 (spring) - Grading test

Author: A.B. Daynyak, candidate of physics and mathematical sciences, associate
professor, associate professor

1. Competencies formed during the process of studying the course

Code and the name of the competence Competency indicators

Gen.Pro.C-2 Use modern IT and software tools
to perform professional tasks in compliance
with information security requirements

Gen.Pro.C-2.2 Apply numerical mathematical methods and
use software applications for scientific problem-solving in
professional settings
Gen.Pro.C-2.1 Apply modern computing tools and Internet
services in professional settings
Gen.Pro.C-2.3 Fulfill basic information security
requirements

Pro.C-1 Assign, formalize, and solve tasks,
develop and research mathematical models of
the studied phenomena and processes,
systematically analyze scientific problems,
obtain new scientific outcomes

Pro.C-1.1 Locate, analyze, and summarize information on
current research findings within the subject area
Pro.C-1.2 Make hypotheses, build mathematical models of
the studied phenomena and processes, evaluate the quality
of the developed model
Pro.C-1.3 Apply theoretical and/or experimental research
methods to a specific scientific task and interpret the
obtained results

Pro.C-2 Conduct scientific research and testing
independently or as a member (leader) of a
small research team

Pro.C-2.1 Apply the principles of scientific work, methods
of collecting and analyzing the obtained data and ways of
argumentation
Pro.C-2.2 Conduct scientific research independently or as a
member (leader) of a small research team
Pro.C-2.3 Present research results through scientific
publications and participation in conferences

2. Competency assessment indicators

As a result of studying the course the student should:

know:
- in CP, the main task is to describe what elementary conditions an object must satisfy in order to be
considered a result.

be able to:
- simulation of simplified and real discrete optimization problems in one of the standard modern
CP-languages MiniZinc.

master:
- basic syntax of the MiniZinc language. Definition of variables and constants. Arrays. Model + data.
Limitations. Output format.

3. List of typical control tasks used to evaluate knowledge and skills

The current control consists of two tests per semester, as well as oral delivery of assignments for
independent decision. Evaluation criteria are attached. Also attached is an example of a test task and
several problems for independent solution on various topics at the end of the program.

4. Evaluation criteria

1. What feature of imperative programming is roughly analogous to the for loop in imperative
programming?
2. Why are exists and forall quantifiers different in complexity in ILP modeling?
3. What is unrolling when converting MiniZinc program into FlatZinc?
4. Provide an example of a redundant constraint and a symmetry breaking constraint.
5. When do we say that one constraint covers the other one?
6. Formulate a dual LP for the given primal LP.

7. Provide an example use case of an alldifferent constraint. What would be the equivalent forall
constraint?
8. Provide the example of interchangeably using if-then-else and Boolean implication.
9. What syntactic structures on MiniZinc can we use to influence the way that it searches for a solution
to the model? Provide a use case example.
10. Which of the solvers COIN-BC, Gecode, Chuffed would better solve an ILP model and why.
11. How one can experimentally prove that for a given model the given constraint is redundant?

Assessment “excellent (10)” is given to a student who has displayed comprehensive, systematic and
deep knowledge of the educational program material, has independently performed all the tasks
stipulated by the program, has deeply studied the basic and additional literature recommended by the
program, has been actively working in the classroom, and understands the basic scientific concepts on
studied discipline, who showed creativity and scientific approach in understanding and presenting
educational program material, whose answer is characterized by using rich and adequate terms, and by
the consistent and logical presentation of the material;

Assessment “excellent (9)” is given to a student who has displayed comprehensive, systematic
knowledge of the educational program material, has independently performed all the tasks provided by
the program, has deeply mastered the basic literature and is familiar with the additional literature
recommended by the program, has been actively working in the classroom, has shown the systematic
nature of knowledge on discipline sufficient for further study, as well as the ability to amplify it on
one’s own, whose answer is distinguished by the accuracy of the terms used, and the presentation of
the material in it is consistent and logical;

Assessment “excellent (8)” is given to a student who has displayed complete knowledge of the
educational program material, does not allow significant inaccuracies in his answer, has independently
performed all the tasks stipulated by the program, studied the basic literature recommended by the
program, worked actively in the classroom, showed systematic character of his knowledge of the
discipline, which is sufficient for further study, as well as the ability to amplify it on his own;

Assessment “good (7)” is given to a student who has displayed a sufficiently complete knowledge of
the educational program material, does not allow significant inaccuracies in the answer, has
independently performed all the tasks provided by the program, studied the basic literature
recommended by the program, worked actively in the classroom, showed systematic character of his
knowledge of the discipline, which is sufficient for further study, as well as the ability to amplify it on
his own;

Assessment “good (6)” is given to a student who has displayed a sufficiently complete knowledge of
the educational program material, does not allow significant inaccuracies in his answer, has
independently carried out the main tasks stipulated by the program, studied the basic literature
recommended by the program, showed systematic character of his knowledge of the discipline, which
is sufficient for further study;

Assessment “good (5)” is given to a student who has displayed knowledge of the basic educational
program material in the amount necessary for further study and future work in the profession, who
while not being sufficiently active in the classroom, has nevertheless independently carried out the
main tasks stipulated by the program, mastered the basic literature recommended by the program, made
some errors in their implementation and in his answer during the test, but has the necessary knowledge
for correcting these errors by himself;

Assessment “satisfactory (4)” is given to a student who has discovered knowledge of the basic
educational program material in the amount necessary for further study and future work in the
profession, who while not being sufficiently active in the classroom, has nevertheless independently
carried out the main tasks stipulated by the program, learned the main literature but allowed some
errors in their implementation and in his answer during the test, but has the necessary knowledge for
correcting these errors under the guidance of a teacher;

Assessment “satisfactory (3)” is given to a student who has displayed knowledge of the basic
educational program material in the amount necessary for further study and future work in the
profession, not showed activity in the classroom, independently fulfilled the main tasks envisaged by
the program, but allowed errors in their implementation and in the answer during the test, but
possessing necessary knowledge for elimination under the guidance of the teacher of the most essential
errors;

Assessment “unsatisfactory (2)” is given to a student who showed gaps in knowledge or lack of
knowledge on a significant part of the basic educational program material, who has not performed
independently the main tasks demanded by the program, made fundamental errors in the fulfillment of
the tasks stipulated by the program, who is not able to continue his studies or start professional
activities without additional training in the discipline in question;

Assessment “unsatisfactory (1)” is given to a student when there is no answer (refusal to answer), or
when the submitted answer does not correspond at all to the essence of the questions contained in the
task.

5. Methodological materials defining the procedures for the assessment of knowledge, skills, abilities
and/or experience

The test is carried out on the basis of the current performance and delivery of tasks and term paper.
Submission of term paper is carried out in the form of an oral report for 15-20 minutes. The topic of the
course work is selected by the student, but must be previously agreed with the teacher and must comply
with the course program. In the course work, the solution to the applied problem using mathematical
modeling methods implemented in the Matlab environment should be presented (other software
packages can be used by agreement with the teacher).

ENG
\begin{problem}
What is the result of running the following model in MiniZinc? How would you explain

it?
\begin{lstlisting}
var int: x = 4;
var int: y = 5;
var int: t;

constraint t = x;
constraint x = y;
constraint y = t;

output [show(x), show(y)];
\end{lstlisting}
\end{problem}

\begin{problem}
Important: in the current problem use only Gecode solver! In class we have looked

at the following model for computing Fibonacci numbers:
\begin{lstlisting}
int: N = 30;
array [0..N] of var int: fib;

constraint
 forall(i in 2..N)(
 fib[i] = fib[i-1] + fib[i-2]
);

constraint
 fib[0] = 1;
constraint
 fib[N] = 1346269;

output [
 "The result is: ",
 join(
 " ",
 [show(x) | x in fib]
)
];
\end{lstlisting}

Experimentally find the largest such \verb"N" for which specifying just the first and

the last values of the Fibonacci array allows us to compute all the other elements of the

array within one second. Then provide an additional knowledge to the solver, that all the

Fibonacci numbers are positive:
\begin{lstlisting}
constraint forall(i in 0..N)(
 fib[i] >= 0
);
\end{lstlisting}
How does the maximal \verb"N" change, what value it not takes?
\end{problem}

\begin{problem}

Consider the following linear constraints:
\begin{eqnarray*}
x_1 - 2x_2 + 6 &\le& 0,\\
-3x_1 + 5x_2 &\ge& -15,\\
-3x_1 + 6x_2 &\le& 18,\\
-x_1 + x_2 &\le& 3,\\
4x_1 - 3x_2 &\le& 7,\\
x_1,x_2 &\ge& 0.
\end{eqnarray*}

Find [with different models] minimum and maximum values for \(f(x_1, x_2) = 2x_1

+ x_2\) under these constraints, and make your model output show which values of \(x_1,

x_2\) result in min/max values. Try solving the problem with different solvers.
\end{problem}

\begin{problem}\label{pro-1}
Consider the following model for NQUEENS problem, in which we use “coordinates”

of the queens as our decision variables:
\begin{lstlisting}
int: N = 8;
set of int: QUEEN = 1..N;
set of int: ROW = 1..N;
set of int: COLUMN = 1..N;

array [QUEEN] of var ROW: row;
array [QUEEN] of var COLUMN: column;

constraint forall(q1 in QUEEN, q2 in QUEEN where q2 != q1)(
 row[q1] != row[q2]
 /\
 column[q1] != column[q2]
 /\
 row[q1] - column[q1] != row[q2] - column[q2]
 /\
 row[q1] + column[q1] != row[q2] + column[q2]
);
\end{lstlisting}

Develop a proper \verb"output" statement for this model so that we can get the

visual representation of the board as we have in other models developed in class. You can

use the following template as a reference, filling in all \verb"???" placeholders:

\begin{lstlisting}
output [
 join(
 "\n", [
 join(
 " ", [
 if exists(???)(fix(???) = i /\ fix(???) = j)
 then "X"
 else "O"
 endif
 | j in COLUMN]
)
 | i in ROW]
)
];
\end{lstlisting}

Why do we have to use \verb"fix" here?

Also recall that in case of satisfaction problems we can add an optional \verb"solve

satisfy;" statement. Add it to the current model.

As an answer to this problem submit a complete model including your \verb"output"

statement.
\end{problem}

\newpage
\begin{problem}
Note how we use named ranges \verb"QUEEN", \verb"ROW" and \verb"COLUMN" to

improve the readability of the model in Problem~\ref{pro-1}. Rework the first “board-

centric model with Boolean decision variables” that we have designed in class, by

introducing constant named ranges to it:
\begin{lstlisting}
int: N = 22;

array[1..N, 1..N] of var bool: board;

constraint
 forall(i in 1..N)(
 exists(j in 1..N)(
 board[i,j] = true
)
);

constraint
 forall(i in 1..N, j in 1..N, iother in 1..N where i != iother)(
 if board[i,j] = true then board[iother,j] = false endif
);

constraint
 forall(i in 1..N, j in 1..N, jother in 1..N where j != jother)(
 board[i,j] = true -> board[i,jother] = false
);

constraint
 forall(
 i in 1..N, j in 1..N, c in (-min(i, j)+1)..min(N-i, N-j)
 where c != 0
)(
 board[i,j] = true -> board[i+c, j+c] = false
);

constraint
 forall(
 i in 1..N, j in 1..N, c in max(1-i, j-N)..min(j-1, N-i)
 where c != 0
)(
 board[i,j] = true -> board[i+c, j-c] = false
);

solve satisfy;

output [
 join(
 "\n",
 [join(" ", [
 if fix(board[i,j]) = true then "X" else "O" endif
 | j in 1..N]) | i in 1..N]
)
];
\end{lstlisting}

As an answer to this problem submit your reworked model.
\end{problem}

\newpage
\begin{problem}
Consider the following model that we worked on in class that uses 0/1-variables

instead of pure Boolean variables:
\begin{lstlisting}
int: N = 8;

array[1..N, 1..N] of var 0..1: board;

% Horizontal line constraints:
constraint
 forall(i in 1..N)(
 sum(j in 1..N)(board[i,j]) = 1
);

% Vertical line constraints:
constraint
 forall(j in 1..N)(
 sum(i in 1..N)(board[i,j]) = 1
);

% Primary diagonals line constraints:
constraint
 forall(c in 1-N..N-1)(
 sum(i in max(1, 1+c)..min(N, N+c))(board[i, i-c]) <= 1
);

% Secondary diagonals line constraints:
constraint
 forall(
 i in 1..N, j in 1..N, c in max(1-i, j-N)..min(j-1, N-i)
 where c != 0
)(
 board[i,j] = 1 -> board[i+c, j-c] = 0
);

solve satisfy;

output [
 join(
 "\n",
 [join(" ", [
 if fix(board[i,j]) = true then "X" else "O" endif
 | j in 1..N]) | i in 1..N]

)
];
\end{lstlisting}

\begin{subproblems}
\item Consider \verb"forall(c in 1-N..N-1)" in “Primary diagonals line constraints”.

Take \(N=4\) and sketch what diagonal of the board is covered by every fixed value of

\verb"c". Can the range of \verb"c" be reduced to smaller one? Explain your answer.
\item In class we have not finished the transition from “logic constraints” (involving

\verb"->") to “arithmetic constraints” (like \verb"sum(…) <= 1") in “Secondary diagonals

line constraints”. Complete this transition and try COIN-BC on the resulting model which will

now have only linear constraints. Can you now solve the NQUEENS problem for \(N=50\) in

under 1 second?
\end{subproblems}
\end{problem}

\begin{problem}
Consider the following dummy model whose only purpose is to output some funny

things into console:
\begin{lstlisting}
% Assume that n is an even number from 2 to 20
int: n = 8;
solve satisfy;
output […];
\end{lstlisting}
Implement a MiniZinc \verb©output […]© statement that will produce the following

output to MiniZinc console:
\begin{lstlisting}
+
++
+++
++++
 ++++
 +++
 ++
 +
\end{lstlisting}
So the output has \verb©n© lines and uses only space and plus symbols, producing

the figure above. Here is also an example for \verb©n = 10©:
\begin{lstlisting}
+
++
+++
++++
+++++
 +++++
 ++++
 +++
 ++
 +
\end{lstlisting}
\end{problem}

\begin{problem}
The KNAPSACK problem is stated as follows. There are several items with known

varying weights and values. There is a knapsack of known maximal weight capacity. The

goal is to pack some of the items into the knapsack without breaking it (due to overweight)

so that the total value of packed items is maximized. Your goal is to solve the problem with

MiniZinc. Let \verb"value" be the array that stores the values of the items and

\verb"weight" be the array storing the weights, and let \verb"MAX_WEIGHT" be the

maximal weight capacity of the knapsack:
\begin{lstlisting}
int: N = 15;
set of int: ITEM = 1..N;

int: MAX_WEIGHT = 150;

array[ITEM] of int:
 value = [1, 1, 2, 5, 3, 4, 5, 2, 1, 1, 2, 2, 3, 4, 4];
array[ITEM] of int:
 weight = [5, 8, 9, 30, 20, 15, 35, 13, 17, 12, 9, 6, 5, 27, 5];
\end{lstlisting}

\begin{subproblems}
\item Implement a model that has a “pure Boolean” (i.e. \verb"bool" in MiniZinc)

decision variable for each item (it will be convenient to have an array of these variables),

each of them being an indicator of taking the corresponding item into the knapsack. Use

\verb"sum(i in ITEM where …)(…)" to compute the weight of the items the decision variables

of which are set to \verb"true".
\item Implement an LP model for the KNAPSACK problem as follows. Introduce 0/1

decision variable for each item (it will be convenient to have an array of these variables),

each of them being an indicator of taking the corresponding item into the knapsack. Express

the objective function in this optimization problem as a linear combination of the decision

variables. Also express the “non-overweighting” constraint as a linear inequality involving

the decision variable. Thus you will be able to run COIN-BC solver on your model.
\end{subproblems}
\end{problem}

\begin{problem}\label{cryptarithmetic}
Solve the following cryptarithmetic puzzle\footnote{See the definition of

cryptarithmetic puzzles \link{https://en.wikipedia.org/wiki/Verbal_arithmetic}{here}.} by

modeling it with MiniZinc (introduce the variables according to unknown letters in the

puzzle, and encode the constraint that matches the puzzle): \verb©MIPT + START =

PARTY©
\end{problem}

\begin{problem}
Suppose variables \verb"x" and \verb"y" are defined as follows:
\begin{lstlisting}
var float: x;
var float: y;
\end{lstlisting}
Out of the following list of constraints one of them is covered by the other two.

Which one is it? Explain the answer.
\begin{lstlisting}
constraint 5*x + 4*y >= 20;
constraint 10*x + y >= 10;
constraint 8*x + 9*y >= 70;
\end{lstlisting}
\end{problem} % Answer: 5*x + 4*y >= 20;

\begin{problem}
Consider the following model of N-queens that we implemented in class (with named

ranges introduced for readability):
\begin{lstlisting}
int: N = 100;
set of int: ROW = 1..N;

set of int: COLUMN = 1..N;

array[ROW, COLUMN] of var 0..1: board;

constraint forall(r in ROW)(sum(c in COLUMN)(board[r,c]) = 1);
constraint forall(c in COLUMN)(sum(r in ROW)(board[r,c]) = 1);

constraint forall(c in 1-N..N-1)(
 sum(i in max(1, 1+c)..min(N, N+c))(board[i, i-c]) <= 1
);

constraint forall(c in 1-N..N-1)(
 sum(i in max(1, 1+c)..min(N, N+c))(board[i, N+1-i+c]) <= 1
);

output [join("\n", [join(" ", [
 if fix(board[r, c]) = true then "X" else "-" endif
 | c in COLUMN]) | r in ROW])];
\end{lstlisting}

Which of the following constraints is/are redundant (i.e. does not change the set of

all feasible solutions to the problem\footnote{Actually, we can also define a constraint as

being redundant if it is covered by the constraints that are already present in your model}):
\begin{subproblems}

\item \begin{lstlisting}
constraint sum(r in ROW, c in COLUMN)(board[r,c]) <= N;
\end{lstlisting}

\item \begin{lstlisting}
constraint exists(r in ROW)(sum(c in COLUMN)(board[r,c]) = 1);
\end{lstlisting}

\item \begin{lstlisting}
constraint sum(i in 1..N)(board[i,i]) >= 1;
\end{lstlisting}
\end{subproblems}

Explain your answer. I.e. if the constraint is not redundant, explain what

configurations were feasible without it and become infeasible with it. If the constraint is

logically entailed by the other constraints in the model, explain how.
\end{problem}

\begin{problem}
Suppose we have some discrete optimization or constraint satisfaction problem (not

necessarily any of the ones we have seen in our course). How can you experimentally

witness that some given constraint is redundant for the model? I.e. if you have your model

coded in MiniZinc and can run Gecode on it or any its modification, what can you do to

assure that a constraint does not make the set of all feasible solutions smaller?
\end{problem}

\begin{problem}
A \emph{Latin square} of order \(n\) is an \(n\times n\) matrix made out of the

integers in \(\{1,2,\dots,n\}\) with the property that each of the these \(n\) integers occurs

exactly once in each row and exactly once in each column of the array. For example
\[
\begin{matrix}
1& 2& 3& 4& 5\\

2& 3& 4& 5& 1\\
3& 4& 5& 1& 2\\
4& 5& 1& 2& 3\\
5& 1& 2& 3& 4
\end{matrix}\]
is a Latin square of order 5. Formulate the problem of finding a Latin square of order

\(n\) in MiniZinc. Employ the \verb©alldifferent© constraint in your model.
\end{problem}

\begin{problem}
A \emph{Magic square} of order \(n\) is an \(n\times n\) matrix filled with integers

\(\{1,2,\dots,n^2\}\) arranged in such a way that the sum of every row, column, and the

two main diagonals is the same. Every integer is used only once in the matrix. For example
\[
\begin{matrix}
1 &15& 24& 8& 17\\
23& 7& 16& 5& 14\\
20& 4 &13& 22 &6\\
12& 21 &10 &19& 3\\
9 &18& 2& 11 &25
\end{matrix}\]
is a magic square of order 5, because each row, column and main diagonal sums up

to 65. Formulate the problem of finding a magic square of order \(n\) in MiniZinc. Employ

the \verb©alldifferent© constraint in your model.
\end{problem}

\begin{problem}\label{chess-pieces}
Consider an \(n\times n\) chess board. Suppose we have Rooks and Bishops

(simultaneously on the same board) and we want to place them on the board in a way that

no two pieces can attack each other. Suppose we receive respectively 2 and 3 units of profit

per each piece of Rook and Bishop that we place on board.\footnote{See any resource on

the internet to learn how Rooks and Bishops move/attack in chess. Feel free to ask TA in

case you need further clarifications on the problem statement.}
\begin{subproblems}
\item Find the maximum profit we can get for \(n = 10\).
\item Find the maximum \(n\) for which your code can give the result in less than 10

seconds.
% \item What \emph{symmetry breaking} constraint could you propose for this

problem?
\end{subproblems}
\end{problem}

\begin{problem}
Which of the following mathematical statements is/are true and why?
\begin{subproblems}
\item ? For every \(n\) every Latin square of order \(n\) has the entries of its first

row going in increasing order.
\item ? For every \(n\) if Latin squares of order \(n\) exist, then there exists a Latin

square that has the entries of its first row going in increasing order.
\item ? For every \(N\) every solution to the N-Queens problem has the following

property: the column index of the queen in the first row is less than the column index of the

queen in the bottom row.
\item ? For every \(N\) if N-Queens problem has solutions, then there exists a

solution that has the following property: the column index of the queen in the first row is

less than the column index of the queen in the bottom row.
\end{subproblems}
\end{problem}

