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Annotation
The course is devoted to one of the modern programming paradigms that has common flavour to functional
and logical programming, and often eludes the standard computer science curriculum, yet is highly practical
and  beneficial  for  the  applied  mathematical  culture  of  the  students:  the  Constraint  Programming  (CP).  In
constraint programming, unlike the ubiquitous imperative programming, instead of describing the sequence of
elementary  operations  needed  to  get  a  desired  result  (object/configuration),  we  rather  describe  the  set  of
elementary constraints — the properties that the object should have to be called the result. Constructing of the
configuration  that  meets  all  the  requirements  is  then  left  to  a  special  program  called  solver  (analogous  to
interpreter  in  imperative  programming).  The  programmer  who is  working  in  CP paradigm does  not  usually
have  direct  control  over  the  time  complexity  of  the  computation,  but  there  are  many  standard  proven
techniques  that  improve  the  efficiency  of  the  programs  (models  as  they  are  called  in  CP)  by  orders  of
magnitude.  The  course  is  aimed  at  familiarizing  the  students  with  these  tools,  and  it  often  implies  some
non-trivial  mathematical  reasoning.  For  practicing  working  in  CP  paradigm  we  use  one  of  the  standard
modern languages MiniZinc.

1. Study objective

Purpose of the course
The  course  is  devoted  to  Constraint  Programming  (CP)  -  a  discipline  lying  at  the  junction  of
mathematical modeling and computer programming, which can be considered a separate programming
paradigm,  close  to  logical  and  functional  programming  and  clearly  different  from the  most  common
imperative  programming  paradigm.  Instead  of  describing  elementary  operations  leading  to  the
achievement of the result, that is, some object / configuration.
The  main  task  in  CP is  to  describe  what  elementary  conditions  an  object  must  satisfy  in  order  to  be
considered a result.

Tasks of the course
The  course  is  designed  to  provide  an  opportunity  to  practice  modeling  simplified  and  real  discrete
optimization problems in one of the standard modern CP-languages MiniZinc.

2. List of the planned results of the course (training module), correlated with the planned results of the 
mastering the educational program

Mastering the discipline is aimed at the formation of the following  competencies:
Code and the name of the competence Competency indicators

Gen.Pro.C-2 Use modern IT and software tools 
to perform professional tasks in compliance 
with information security requirements

Gen.Pro.C-2.2  Apply  numerical  mathematical  methods  and
use  software  applications  for  scientific  problem-solving  in
professional settings 
Gen.Pro.C-2.1  Apply  modern  computing  tools  and  Internet
services in professional settings 
Gen.Pro.C-2.3  Fulfill  basic  information  security
requirements

Pro.C-1 Assign, formalize, and solve tasks, 
develop and research mathematical models of 
the studied phenomena and processes, 
systematically analyze scientific problems, 
obtain new scientific outcomes

Pro.C-1.1  Locate,  analyze,  and  summarize  information  on
current research findings within the subject area 
Pro.C-1.2  Make  hypotheses,  build  mathematical  models  of
the  studied  phenomena  and  processes,  evaluate  the  quality
of the developed model
Pro.C-1.3  Apply  theoretical  and/or  experimental  research
methods  to  a  specific  scientific  task  and  interpret  the
obtained results

Pro.C-2 Conduct scientific research and testing 
independently or as a member (leader) of a 
small research team

Pro.C-2.1  Apply  the  principles  of  scientific  work,  methods
of  collecting  and  analyzing  the  obtained  data  and  ways  of
argumentation
Pro.C-2.2 Conduct scientific research independently or as a
member (leader) of a small research team
Pro.C-2.3  Present  research  results  through  scientific
publications and participation in conferences



3. List of the planned results of the course (training module)
As a result of studying the course the student should:
know:

- in CP, the main task is to describe what elementary conditions an object must satisfy in order to be
considered a result.

be able to:
-  simulation  of  simplified  and  real  discrete  optimization  problems  in  one  of  the  standard  modern
CP-languages MiniZinc.

master:
- basic syntax of the MiniZinc language. Definition of variables and constants. Arrays. Model + data.
Limitations. Output format.

4. Content of the course (training module), structured by topics (sections), indicating the number of 
allocated academic hours and types of training sessions 

4.1. The sections of the course (training module) and the complexity of the types of training sessions

№ Topic (section) of the course

Types of training sessions, including independent work

Lectures Seminars Laboratory 
practical

Independent 
work

1 Constraint  programming:  its  differences
with imperative programming. 8 9

2
Terminology  and  mathematical
formalization  of  constraint  satisfaction
and optimization.

8 9

3 MiniZinc and FlatZinc syntax basics. 7 8

4 Types  of  solvers:  CP  solvers,  MILP
solvers. 6 8

5 Global constraints 5 8

6 Linear  Programming  as  a  modeling  tool
and mathematical subject 8 9

7 Symmetries of the search space. Breaking
symmetries. 8 8

8 Search mechanics of CP solvers. 5 8
9 Industrial tools for CP and optimization. 5 8
AH in total 60 75

Exam preparation 0 AH.

Total complexity 135 AH., credits in total 3

4.2. Content of the course (training module), structured by topics (sections)

Semester: 4 (Spring)

1. Constraint programming: its differences with imperative programming.

Models vs. programs, solvers vs. interpreters, constraints vs. commands/instructions, quantifiers vs.
loops, etc.

2. Terminology and mathematical formalization of constraint satisfaction and optimization.



Feasible  solutions,  optimal  solutions.  Search  space.  Reduction  of  optimization  to  constraint
satisfaction.

3. MiniZinc and FlatZinc syntax basics.

Variable and constant definitions. Models and data files. Constraints. Output statements.

4. Types of solvers: CP solvers, MILP solvers.

Their strengths and limitations. Examples of the same problem modelled differently for CP vs MILP
solvers based on N-Queens problem.

5. Global constraints

Alldifferent,  increasing  and  other  typical  global  constraints.  Implementation  of  alldifferent
constraint.

6. Linear Programming as a modeling tool and mathematical subject

Modeling  logical  constraints  with  linear  constraints  and  integer  variables.   Duality  in  linear
programming. Duality as certifiability.

7. Symmetries of the search space. Breaking symmetries.

Symmetry breaking constraints vs. redundant constraints.

8. Search mechanics of CP solvers.

Variable choice and value choice. Restarts. Search annotations.

9. Industrial tools for CP and optimization.

Google OR tools. Interfacing with Python. Practice of constraint programming.

5. Description of the material and technical facilities that are necessary for the implementation of the 
educational process of the course (training module)

The classroom is equipped with personal computers, a multimedia projector and a screen.

6. List of the main and additional literature, that is necessary for the course (training module) 
mastering

Main literature
1. MATLAB 7 [Текст] : программирование, численные методы / Ю. Л. Кетков, А. Ю. Кетков, М. 
М. Шульц .— СПб. : БХВ-Петербург, 2005 .— 737 с.
2. Линейное программирование [Текст] / Ф. П. Васильев, А. Ю. Иваницкий - М.Факториал 
Пресс,2008

Additional literature
1. MATLAB 7 [Текст] : в подлиннике : наиболее полное руководство / И. Е. Ануфриев, А. Б. 
Смирнов, Е. Н. Смирнова .— СПб. : БХВ-Петербург, 2005 .— 1104 с.

7. List of web resources that are necessary for the course (training module) mastering

http://www.mou.mipt.ru
http://www.exponenta.ru/educat/free/matlab/gs.pdf



8.  List of information technologies used for implementation of the educational process, including a list 
of software and information reference systems (if necessary)

The classes use multimedia technologies, including demonstration of presentations, as well as the 
MiniZinc CP language software development tool.

9. Guidelines for students to master the course

1.  It  is  recommended  to  successfully  pass  test  papers,  as  this  simplifies  the  final  certification  in  the
subject.
2. To prepare for the final certification in the subject, it is best to use the lecture materials.
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1. Competencies formed during the process of studying the course 

Code and the name of the competence Competency indicators

Gen.Pro.C-2 Use modern IT and software tools 
to perform professional tasks in compliance 
with information security requirements

Gen.Pro.C-2.2  Apply  numerical  mathematical  methods  and
use  software  applications  for  scientific  problem-solving  in
professional settings 
Gen.Pro.C-2.1  Apply  modern  computing  tools  and  Internet
services in professional settings 
Gen.Pro.C-2.3  Fulfill  basic  information  security
requirements

Pro.C-1 Assign, formalize, and solve tasks, 
develop and research mathematical models of 
the studied phenomena and processes, 
systematically analyze scientific problems, 
obtain new scientific outcomes

Pro.C-1.1  Locate,  analyze,  and  summarize  information  on
current research findings within the subject area 
Pro.C-1.2  Make  hypotheses,  build  mathematical  models  of
the  studied  phenomena  and  processes,  evaluate  the  quality
of the developed model
Pro.C-1.3  Apply  theoretical  and/or  experimental  research
methods  to  a  specific  scientific  task  and  interpret  the
obtained results

Pro.C-2 Conduct scientific research and testing 
independently or as a member (leader) of a 
small research team

Pro.C-2.1  Apply  the  principles  of  scientific  work,  methods
of  collecting  and  analyzing  the  obtained  data  and  ways  of
argumentation
Pro.C-2.2 Conduct scientific research independently or as a
member (leader) of a small research team
Pro.C-2.3  Present  research  results  through  scientific
publications and participation in conferences

2. Competency assessment indicators

As a result of studying the course the student should:

know:
- in CP, the main task is to describe what elementary conditions an object must satisfy in order to be
considered a result.

be able to:
-  simulation  of  simplified  and  real  discrete  optimization  problems  in  one  of  the  standard  modern
CP-languages MiniZinc.

master:
- basic syntax of the MiniZinc language. Definition of variables and constants. Arrays. Model + data.
Limitations. Output format.

3. List of typical control tasks used to evaluate knowledge and skills 

The  current  control  consists  of  two  tests  per  semester,  as  well  as  oral  delivery  of  assignments  for
independent decision. Evaluation criteria are attached. Also attached is an example of a test  task and
several problems for independent solution on various topics at the end of the program.

4. Evaluation criteria

1.  What  feature  of  imperative  programming  is  roughly  analogous  to  the  for  loop  in  imperative
programming?
2. Why are exists and forall quantifiers different in complexity in ILP modeling?
3. What is unrolling when converting MiniZinc program into FlatZinc?
4. Provide an example of a redundant constraint and a symmetry breaking constraint.
5. When do we say that one constraint covers the other one?
6. Formulate a dual LP for the given primal LP.



7.  Provide  an  example  use  case  of  an  alldifferent  constraint.  What  would  be  the  equivalent  forall
constraint?
8. Provide the example of interchangeably using if-then-else and Boolean implication.
9. What syntactic structures on MiniZinc can we use to influence the way that it searches for a solution
to the model? Provide a use case example.
10. Which of the solvers COIN-BC, Gecode, Chuffed would better solve an ILP model and why.
11. How one can experimentally prove that for a given model the given constraint is redundant?

Assessment “excellent (10)”  is  given to a student who has displayed comprehensive, systematic and
deep  knowledge  of  the  educational  program  material,  has  independently  performed  all  the  tasks
stipulated by the program, has deeply studied the basic and additional literature recommended by the
program, has been actively working in the classroom, and understands the basic scientific concepts on
studied  discipline,  who  showed  creativity  and  scientific  approach  in  understanding  and  presenting
educational program material, whose answer is characterized by using rich and adequate terms, and by
the consistent and logical presentation of the material;

Assessment  “excellent  (9)”   is  given  to  a  student  who  has  displayed  comprehensive,  systematic
knowledge of the educational program material, has independently performed all the tasks provided by
the  program,  has  deeply  mastered  the  basic  literature  and  is  familiar  with  the  additional  literature
recommended by the program, has been actively working in the classroom, has shown the systematic
nature  of  knowledge  on  discipline  sufficient  for  further  study,  as  well  as  the  ability  to  amplify  it  on
one’s own, whose answer is distinguished by the accuracy of the terms used, and the presentation of
the material in it is consistent and logical;

Assessment  “excellent  (8)”   is  given  to  a  student  who  has  displayed  complete  knowledge  of  the
educational program material, does not allow significant inaccuracies in his answer, has independently
performed  all  the  tasks  stipulated  by  the  program,  studied  the  basic  literature  recommended  by  the
program,  worked  actively  in  the  classroom,  showed  systematic  character  of  his  knowledge  of  the
discipline, which is sufficient for further study, as well as the ability to amplify it on his own;

Assessment “good (7)”  is given to a student who has displayed a sufficiently complete knowledge of
the  educational  program  material,  does  not  allow  significant  inaccuracies  in  the  answer,  has
independently  performed  all  the  tasks  provided  by  the  program,  studied  the  basic  literature
recommended by the  program,  worked actively  in  the  classroom,  showed systematic  character  of  his
knowledge of the discipline, which is sufficient for further study, as well as the ability to amplify it on
his own;

Assessment “good (6)”  is given to a student who has displayed a sufficiently complete knowledge of
the  educational  program  material,  does  not  allow  significant  inaccuracies  in  his  answer,  has
independently  carried  out  the  main  tasks  stipulated  by  the  program,  studied  the  basic  literature
recommended by the program, showed systematic character of his knowledge of the discipline, which
is sufficient for further study;

Assessment  “good (5)”   is  given to  a  student  who has  displayed knowledge of  the  basic  educational
program  material  in  the  amount  necessary  for  further  study  and  future  work  in  the  profession,  who
while  not  being  sufficiently  active  in  the  classroom,  has  nevertheless  independently  carried  out  the
main tasks stipulated by the program, mastered the basic literature recommended by the program, made
some errors in their implementation and in his answer during the test, but has the necessary knowledge
for correcting these errors by himself;

Assessment  “satisfactory  (4)”   is  given  to  a  student  who  has  discovered  knowledge  of  the  basic
educational  program  material  in  the  amount  necessary  for  further  study  and  future  work  in  the
profession,  who  while  not  being  sufficiently  active  in  the  classroom,  has  nevertheless  independently
carried  out  the  main  tasks  stipulated  by  the  program,  learned  the  main  literature  but  allowed  some
errors in their implementation and in his answer during the test, but has the necessary knowledge for
correcting these errors under the guidance of a teacher;



Assessment  “satisfactory  (3)”   is  given  to  a  student  who  has  displayed  knowledge  of  the  basic
educational  program  material  in  the  amount  necessary  for  further  study  and  future  work  in  the
profession, not showed activity in the classroom, independently fulfilled the main tasks envisaged by
the  program,  but  allowed  errors  in  their  implementation  and  in  the  answer  during  the  test,  but
possessing necessary knowledge for elimination under the guidance of the teacher of the most essential
errors;

Assessment  “unsatisfactory  (2)”  is  given  to  a  student  who  showed  gaps  in  knowledge  or  lack  of
knowledge  on  a  significant  part  of  the  basic  educational  program  material,  who  has  not  performed
independently the main tasks demanded by the program, made fundamental errors in the fulfillment of
the  tasks  stipulated  by  the  program,  who  is  not  able  to  continue  his  studies  or  start  professional
activities without additional training in the discipline in question;

Assessment “unsatisfactory (1)” is given to a student when there is no answer (refusal to answer), or
when the submitted answer does not correspond at all to the essence of the questions contained in the
task.

5.  Methodological  materials  defining  the  procedures  for  the  assessment  of  knowledge,  skills,  abilities
and/or experience

The test  is  carried  out  on the  basis  of  the  current  performance and delivery  of  tasks  and term paper.
Submission of term paper is carried out in the form of an oral report for 15-20 minutes. The topic of the
course work is selected by the student, but must be previously agreed with the teacher and must comply
with the course program. In the course work, the solution to the applied problem using mathematical
modeling  methods  implemented  in  the  Matlab  environment  should  be  presented  (other  software
packages can be used by agreement with the teacher).



ENG 
\begin{problem} 
What is the result of running the following model in MiniZinc? How would you explain 

it? 
\begin{lstlisting} 
var int: x = 4; 
var int: y = 5; 
var int: t; 

 
constraint t = x; 
constraint x = y; 
constraint y = t; 

 
output [show(x), show(y)]; 
\end{lstlisting} 
\end{problem} 

 

\begin{problem} 
Important: in the current problem use only Gecode solver! In class we have looked 

at the following model for computing Fibonacci numbers: 
\begin{lstlisting} 
int: N = 30; 
array [0..N] of var int: fib; 

 
constraint  
  forall(i in 2..N)( 
    fib[i] = fib[i-1] + fib[i-2] 
  ); 

 
constraint  
  fib[0] = 1; 
constraint  
  fib[N] = 1346269; 

 
output [ 
  "The result is: ",  
  join( 
    " ",  
    [show(x) | x in fib] 
  ) 
]; 
\end{lstlisting} 

 
Experimentally find the largest such \verb"N" for which specifying just the first and 

the last values of the Fibonacci array allows us to compute all the other elements of the 

array within one second. Then provide an additional knowledge to the solver, that all the 

Fibonacci numbers are positive: 
\begin{lstlisting} 
constraint forall(i in 0..N)( 
  fib[i] >= 0 
); 
\end{lstlisting} 
How does the maximal \verb"N" change, what value it not takes? 
\end{problem} 

 

\begin{problem} 



Consider the following linear constraints: 
\begin{eqnarray*} 
x_1 - 2x_2 + 6 &\le& 0,\\ 
-3x_1 + 5x_2 &\ge& -15,\\ 
-3x_1 + 6x_2 &\le& 18,\\ 
-x_1 + x_2 &\le& 3,\\ 
4x_1 - 3x_2 &\le& 7,\\ 
x_1,x_2 &\ge& 0. 
\end{eqnarray*} 

 
Find [with different models] minimum and maximum values for \(f(x_1, x_2) = 2x_1 

+ x_2\) under these constraints, and make your model output show which values of \(x_1, 

x_2\) result in min/max values. Try solving the problem with different solvers. 
\end{problem} 

 

\begin{problem}\label{pro-1} 
Consider the following model for NQUEENS problem, in which we use “coordinates” 

of the queens as our decision variables: 
\begin{lstlisting} 
int: N = 8; 
set of int: QUEEN = 1..N; 
set of int: ROW = 1..N; 
set of int: COLUMN = 1..N; 

 
array [QUEEN] of var ROW: row; 
array [QUEEN] of var COLUMN: column; 

 
constraint forall(q1 in QUEEN, q2 in QUEEN where q2 != q1)( 
  row[q1] != row[q2]  
  /\  
  column[q1] != column[q2] 
  /\ 
  row[q1] - column[q1] != row[q2] - column[q2] 
  /\ 
  row[q1] + column[q1] != row[q2] + column[q2] 
); 
\end{lstlisting} 

 
Develop a proper \verb"output" statement for this model so that we can get the 

visual representation of the board as we have in other models developed in class. You can 

use the following template as a reference, filling in all \verb"???" placeholders: 
 

\begin{lstlisting} 
output [ 
  join( 
  "\n", [ 
    join( 
      " ", [ 
        if exists(???)(fix(???) = i /\ fix(???) = j) 
        then "X" 
        else "O" 
        endif  
      | j in COLUMN] 
    )  
  | i in ROW] 
  ) 
]; 
\end{lstlisting} 



 
Why do we have to use \verb"fix" here? 

 
Also recall that in case of satisfaction problems we can add an optional \verb"solve 

satisfy;" statement. Add it to the current model. 
 

As an answer to this problem submit a complete model including your \verb"output" 

statement. 
\end{problem} 

 
\newpage 
\begin{problem} 
Note how we use named ranges \verb"QUEEN", \verb"ROW" and \verb"COLUMN" to 

improve the readability of the model in Problem~\ref{pro-1}. Rework the first “board-

centric model with Boolean decision variables” that we have designed in class, by 

introducing constant named ranges to it: 
\begin{lstlisting} 
int: N = 22; 

 
array[1..N, 1..N] of var bool: board; 

 
constraint  
  forall(i in 1..N)( 
    exists(j in 1..N)( 
      board[i,j] = true 
    ) 
  ); 

 
constraint  
  forall(i in 1..N, j in 1..N, iother in 1..N where i != iother)( 
    if board[i,j] = true then board[iother,j] = false endif 
  ); 

 
constraint  
  forall(i in 1..N, j in 1..N, jother in 1..N where j != jother)( 
    board[i,j] = true -> board[i,jother] = false 
  ); 

 

constraint  
  forall( 
    i in 1..N, j in 1..N, c in (-min(i, j)+1)..min(N-i, N-j) 
    where c != 0 
  )( 
    board[i,j] = true -> board[i+c, j+c] = false 
  ); 

 
constraint  
  forall( 
    i in 1..N, j in 1..N, c in max(1-i, j-N)..min(j-1, N-i) 
    where c != 0 
  )( 
    board[i,j] = true -> board[i+c, j-c] = false 
  ); 

 

solve satisfy; 
 



output [ 
  join( 
    "\n",  
    [join(" ", [ 
      if fix(board[i,j]) = true then "X" else "O" endif 
    | j in 1..N]) | i in 1..N] 
  ) 
]; 
\end{lstlisting} 

 
As an answer to this problem submit your reworked model. 
\end{problem} 

 

\newpage 
\begin{problem} 
Consider the following model that we worked on in class that uses 0/1-variables 

instead of pure Boolean variables: 
\begin{lstlisting} 
int: N = 8; 

 
array[1..N, 1..N] of var 0..1: board; 

 
% Horizontal line constraints: 
constraint  
  forall(i in 1..N)( 
    sum(j in 1..N)(board[i,j]) = 1 
  ); 

 
% Vertical line constraints: 
constraint  
  forall(j in 1..N)( 
    sum(i in 1..N)(board[i,j]) = 1 
  ); 

 
% Primary diagonals line constraints: 
constraint  
  forall(c in 1-N..N-1)( 
    sum(i in max(1, 1+c)..min(N, N+c))(board[i, i-c]) <= 1 
  ); 

 
% Secondary diagonals line constraints: 
constraint  
  forall( 
    i in 1..N, j in 1..N, c in max(1-i, j-N)..min(j-1, N-i) 
    where c != 0 
  )( 
    board[i,j] = 1 -> board[i+c, j-c] = 0 
  ); 

 
solve satisfy; 

 
output [ 
  join( 
    "\n",  
    [join(" ", [ 
      if fix(board[i,j]) = true then "X" else "O" endif 
    | j in 1..N]) | i in 1..N] 



  ) 
]; 
\end{lstlisting} 

 
\begin{subproblems} 
\item Consider \verb"forall(c in 1-N..N-1)" in “Primary diagonals line constraints”. 

Take \(N=4\) and sketch what diagonal of the board is covered by every fixed value of 

\verb"c". Can the range of \verb"c" be reduced to smaller one? Explain your answer. 
\item In class we have not finished the transition from “logic constraints” (involving 

\verb"->") to “arithmetic constraints” (like \verb"sum(…) <= 1") in “Secondary diagonals 

line constraints”. Complete this transition and try COIN-BC on the resulting model which will 

now have only linear constraints. Can you now solve the NQUEENS problem for \(N=50\) in 

under 1 second? 
\end{subproblems} 
\end{problem} 

 

\begin{problem} 
Consider the following dummy model whose only purpose is to output some funny 

things into console: 
\begin{lstlisting} 
% Assume that n is an even number from 2 to 20 
int: n = 8; 
solve satisfy; 
output […]; 
\end{lstlisting} 
Implement a MiniZinc \verb©output […]© statement that will produce the following 

output to MiniZinc console: 
\begin{lstlisting} 
+ 
++ 
+++ 
++++ 
     ++++ 
      +++ 
       ++ 
        + 
\end{lstlisting} 
So the output has \verb©n© lines and uses only space and plus symbols, producing 

the figure above. Here is also an example for \verb©n = 10©: 
\begin{lstlisting} 
+ 
++ 
+++ 
++++ 
+++++ 
      +++++ 
       ++++ 
        +++ 
         ++ 
          + 
\end{lstlisting} 
\end{problem} 

 
\begin{problem} 
The KNAPSACK problem is stated as follows. There are several items with known 

varying weights and values. There is a knapsack of known maximal weight capacity. The 

goal is to pack some of the items into the knapsack without breaking it (due to overweight) 

so that the total value of packed items is maximized. Your goal is to solve the problem with 



MiniZinc. Let \verb"value" be the array that stores the values of the items and 

\verb"weight" be the array storing the weights, and let \verb"MAX_WEIGHT" be the 

maximal weight capacity of the knapsack: 
\begin{lstlisting} 
int: N = 15; 
set of int: ITEM = 1..N; 

 
int: MAX_WEIGHT = 150; 

 
array[ITEM] of int:  
    value = [1, 1, 2, 5, 3, 4, 5, 2, 1, 1, 2, 2, 3, 4, 4]; 
array[ITEM] of int:  
    weight = [5, 8, 9, 30, 20, 15, 35, 13, 17, 12, 9, 6, 5, 27, 5]; 
\end{lstlisting} 

 
\begin{subproblems} 
\item Implement a model that has a “pure Boolean” (i.e. \verb"bool" in MiniZinc) 

decision variable for each item (it will be convenient to have an array of these variables), 

each of them being an indicator of taking the corresponding item into the knapsack. Use 

\verb"sum(i in ITEM where …)(…)" to compute the weight of the items the decision variables 

of which are set to \verb"true". 
\item Implement an LP model for the KNAPSACK problem as follows. Introduce 0/1 

decision variable for each item (it will be convenient to have an array of these variables), 

each of them being an indicator of taking the corresponding item into the knapsack. Express 

the objective function in this optimization problem as a linear combination of the decision 

variables. Also express the “non-overweighting” constraint as a linear inequality involving 

the decision variable. Thus you will be able to run COIN-BC solver on your model. 
\end{subproblems} 
\end{problem} 

 
\begin{problem}\label{cryptarithmetic} 
Solve the following cryptarithmetic puzzle\footnote{See the definition of 

cryptarithmetic puzzles \link{https://en.wikipedia.org/wiki/Verbal_arithmetic}{here}.}  by 

modeling it with MiniZinc (introduce the variables according to unknown letters in the 

puzzle, and encode the constraint that matches the puzzle): \verb©MIPT + START = 

PARTY© 
\end{problem} 

 
\begin{problem} 
Suppose variables \verb"x" and \verb"y" are defined as follows: 
\begin{lstlisting} 
var float: x; 
var float: y; 
\end{lstlisting} 
Out of the following list of constraints one of them is covered by the other two. 

Which one is it? Explain the answer. 
\begin{lstlisting} 
constraint 5*x + 4*y >= 20; 
constraint 10*x + y >= 10; 
constraint 8*x + 9*y >= 70; 
\end{lstlisting} 
\end{problem} % Answer: 5*x + 4*y >= 20; 

 
\begin{problem} 
Consider the following model of N-queens that we implemented in class (with named 

ranges introduced for readability): 
\begin{lstlisting} 
int: N = 100; 
set of int: ROW = 1..N; 



set of int: COLUMN = 1..N; 
 

array[ROW, COLUMN] of var 0..1: board; 
 

constraint forall(r in ROW)(sum(c in COLUMN)(board[r,c]) = 1); 
constraint forall(c in COLUMN)(sum(r in ROW)(board[r,c]) = 1); 

 
constraint forall(c in 1-N..N-1)( 
    sum(i in max(1, 1+c)..min(N, N+c))(board[i, i-c]) <= 1 
  ); 

 
constraint forall(c in 1-N..N-1)( 
    sum(i in max(1, 1+c)..min(N, N+c))(board[i, N+1-i+c]) <= 1 
  ); 

 
output [join("\n", [join(" ", [ 
      if fix(board[r, c]) = true then "X" else "-" endif 
    | c in COLUMN]) | r in ROW])]; 
\end{lstlisting} 

 
Which of the following constraints is/are redundant (i.e. does not change the set of 

all feasible solutions to the problem\footnote{Actually, we can also define a constraint as 

being redundant if it is covered by the constraints that are already present in your model}): 
\begin{subproblems} 

 
\item \begin{lstlisting} 
constraint sum(r in ROW, c in COLUMN)(board[r,c]) <= N; 
\end{lstlisting} 

 
\item \begin{lstlisting} 
constraint exists(r in ROW)(sum(c in COLUMN)(board[r,c]) = 1); 
\end{lstlisting} 

 
\item \begin{lstlisting} 
constraint sum(i in 1..N)(board[i,i]) >= 1; 
\end{lstlisting} 
\end{subproblems} 

 
Explain your answer. I.e. if the constraint is not redundant, explain what 

configurations were feasible without it and become infeasible with it. If the constraint is 

logically entailed by the other constraints in the model, explain how. 
\end{problem} 

 
\begin{problem} 
Suppose we have some discrete optimization or constraint satisfaction problem (not 

necessarily any of the ones we have seen in our course). How can you experimentally 

witness that some given constraint is redundant for the model? I.e. if you have your model 

coded in MiniZinc and can run Gecode on it or any its modification, what can you do to 

assure that a constraint does not make the set of all feasible solutions smaller? 
\end{problem} 

 
\begin{problem} 
A \emph{Latin square} of order \(n\) is an \(n\times n\) matrix made out of the 

integers in \(\{1,2,\dots,n\}\) with the property that each of the these \(n\) integers occurs 

exactly once in each row and exactly once in each column of the array. For example 
\[ 
\begin{matrix} 
1& 2& 3& 4& 5\\ 



2& 3& 4& 5& 1\\ 
3& 4& 5& 1& 2\\ 
4& 5& 1& 2& 3\\ 
5& 1& 2& 3& 4 
\end{matrix}\] 
is a Latin square of order 5. Formulate the problem of finding a Latin square of order 

\(n\) in MiniZinc. Employ the \verb©alldifferent© constraint in your model. 
\end{problem} 

 
\begin{problem} 
A \emph{Magic square} of order \(n\) is an \(n\times n\) matrix filled with integers 

\(\{1,2,\dots,n^2\}\) arranged in such a way that the sum of every row, column, and the 

two main diagonals is the same. Every integer is used only once in the matrix. For example 
\[ 
\begin{matrix} 
1 &15& 24& 8& 17\\ 
23& 7& 16& 5& 14\\ 
20& 4 &13& 22 &6\\ 
12& 21 &10 &19& 3\\ 
9 &18& 2& 11 &25 
\end{matrix}\] 
is a magic square of order 5, because each row, column and main diagonal sums up 

to 65. Formulate the problem of finding a magic square of order \(n\) in MiniZinc. Employ 

the \verb©alldifferent© constraint in your model. 
\end{problem} 

 

\begin{problem}\label{chess-pieces} 
Consider an \(n\times n\) chess board. Suppose we have Rooks and Bishops 

(simultaneously on the same board) and we want to place them on the board in a way that 

no two pieces can attack each other. Suppose we receive respectively 2 and 3 units of profit 

per each piece of Rook and Bishop that we place on board.\footnote{See any resource on 

the internet to learn how Rooks and Bishops move/attack in chess. Feel free to ask TA in 

case you need further clarifications on the problem statement.} 
\begin{subproblems} 
\item Find the maximum profit we can get for \(n = 10\). 
\item Find the maximum \(n\) for which your code can give the result in less than 10 

seconds. 
% \item What \emph{symmetry breaking} constraint could you propose for this 

problem?  
\end{subproblems} 
\end{problem} 

 
\begin{problem} 
Which of the following mathematical statements is/are true and why? 
\begin{subproblems} 
\item ? For every \(n\) every Latin square of order \(n\) has the entries of its first 

row going in increasing order. 
\item ? For every \(n\) if Latin squares of order \(n\) exist, then there exists a Latin 

square that has the entries of its first row going in increasing order. 
\item ? For every \(N\) every solution to the N-Queens problem has the following 

property: the column index of the queen in the first row is less than the column index of the 

queen in the bottom row. 
\item ? For every \(N\) if N-Queens problem has solutions, then there exists a 

solution that has the following property: the column index of the queen in the first row is 

less than the column index of the queen in the bottom row. 
\end{subproblems} 
\end{problem} 

 


