Документ подписан простой электронной подписью Информация о владельце: ФИО: Ливанов Дмитрий Викторович

Должность: Ректор

Дата подписания: 21.07.2025 14:35:10 Уникальный программный ключ:

c6d909c49c1d2034fa3a0156c4eaa51e7232a3a2

Утверждена решением Ученого совета МФТИ от 27 марта 2025 г. (протокол № 01/03/2025)

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Уровень высшего образования МАГИСТР

Направление подготовки 14.04.02 ЯЛЕРНЫЕ ФИЗИКА И ТЕХНОЛОГИИ

Направленность (профиль) ЯДЕРНАЯ ФИЗИКА, УТС И КОМПЬЮТЕРНЫЕ МЕТОДЫ В ФИЗИКЕ

Год начала обучения по образовательной программе 2025 г.

Основная образовательная программа высшего образования по направлению подготовки 14.04.02 Ядерные физика и технологии, направленность (профиль) Ядерная физика, УТС и компьютерные методы в физике, реализуемая в МФТИ, представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики образовательной программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных и методических материалов. Основная образовательная программа высшего образования создана на основе образовательного стандарта по направлению подготовки 14.04.02 Ядерные физика и технологии, самостоятельно разработанного и утвержденного МФТИ.

1. Общая характеристика образовательной программы

Квалификация, присваиваемая выпускникам: магистр.

Форма обучения: очная.

Срок получения образования: 2 года.

Объем образовательной программы составляет 120 зачетных единиц и включает все виды аудиторной и самостоятельной работы обучающегося, практики, время, отводимое на контроль качества освоения обучающимся образовательной программы.

Объем контактной работы обучающихся с преподавателями составляет не менее 1 143 часов. **Язык реализации программы:** русский.

Использование сетевой формы реализации образовательной программы: да.

Цель программы:

Назначение образовательной программы – подготовка высококвалифицированных специалистов в области фундаментальной и прикладной ядерной физики, управляемого термоядерного синтеза и компьютерных методов в физике. Современное положение дел в рассматриваемых областях характеризуется тем, что перед учеными остро стоит задача не столько научного сопровождения и совершенствования существующих ядерно-технологических систем, сколько поиска принципиальных решений для создания новых установок, реализующих ядерные технологии в различных сферах человеческой деятельности на уровне требований следующего столетия, особенно в вопросах эффективности и надежности. Необходимость пересмотра прежних подходов в ядерных технологиях, сохранение позитива наработанных методологий и, главное, разработка и внедрение новых методов требует углубленной базовой подготовки студентов, аспирантов и молодых специалистов по многим направлениям теоретической И экспериментальной физики, прикладной информационных технологий.

Научно-исследовательские институты и центры, в которых проходят подготовку студенты, — это одни из ведущих научных центров мира, междисциплинарные национальные лаборатории, оснащенные уникальными научными комплексами и проводящие научные исследования в самых разных областях современной физики.

Сетевая программа реализуется совместно с базовыми организациями: Частное учреждение «ИТЭР-Центр», ИЯИ РАН, ОИЯИ.

2. Характеристика профессиональной деятельности выпускников:

Области профессиональной деятельности и сферы профессиональной деятельности,

в которых выпускники, освоившие программу магистратуры, могут осуществлять профессиональную деятельность:

- 24 Атомная промышленность (в сфере проведения фундаментальных и прикладных исследований, инновационных и опытно-конструкторских разработок в области ядерной физики, теоретической физики, физики элементарных частиц, физики экстремальных состояний, проблем атомной и термоядерной энергетики, драйверов для термоядерной энергетики, создания и применения установок и систем в области физики ядра, частиц, плазмы, физики разделения изотопных и молекулярных смесей, радиационной медицинской физики, радиационного материаловедения, обеспечения ядерной и радиационной безопасности и т.д.);
- 40 Сквозные виды профессиональной деятельности в промышленности (в сфере фундаментальных и прикладных научно-исследовательских, инновационных и опытно-конструкторских разработок, в том числе, в области регистрации и обработки информации, физики конденсированного состояния вещества, физики быстропротекающих процессов, лазерной физики, исследований неравновесных физических процессов, распространения и взаимодействия излучения с объектами живой и неживой природы и т.д.).

Выпускники могут осуществлять профессиональную деятельность в других областях профессиональной деятельности и (или) сферах профессиональной деятельности при условии соответствия уровня их образования и полученных компетенций требованиям квалификации работника.

Типы задач профессиональной деятельности выпускников:

научно-исследовательский.

Задачи профессиональной деятельности выпускников:

сбор, обработка, анализ и систематизация научно-технической информации по теме научного исследования в избранной области ядерной физики и технологий;

формулирование задач и планов научного исследования в области ядерной физики и технологий, выбор необходимых методов исследования, совершенствование известных и разработка новых методов исследований;

построение математических моделей объектов исследования и выбор численного метода их моделирования, разработка нового или выбор готового алгоритма решения задачи;

выбор оптимального метода и разработка программ экспериментальных исследований, проведение ядерно-физических, оптических, фотометрических, электрических измерений с выбором технических средств и обработкой результатов, работа на экспериментальных ядерно-физических установках;

проведение экспериментальных и расчетно-теоретических исследований поставленных проблем;

осуществление наладки, настройки и опытной проверки наукоемких ядерно-физических приборов, систем и комплексов;

анализ получаемой физической информации с применением современных вычислительных технологий;

оформление отчетов, статей, рефератов на базе современных средств редактирования и печати в соответствии с установленными требованиями.

Объекты профессиональной деятельности выпускников, освоивших программу магистратуры:

физические процессы и явления, определяющие функционирование, эффективность и технологию производства ядерно-физических и физико-технологических приборов, систем и комплексов различного назначения, а также способы и методы их исследования, разработки, изготовления и применения;

экспертиза и мониторинг ядерно-физических технологий;

ядерно-физические системы различного масштаба и уровней организации.

3. Перечень профессиональных стандартов, соответствующих профессиональной

деятельности выпускников:

24.078 Специалист-исследователь в области ядерно-энергетических технологий;

40.011 Специалист по научно-исследовательским и опытно-конструкторским разработкам.

Код и наименование	Обобщенные трудовые функции		Трудовые функции			
профессионального стандарта	код	наименование	уро вень квалиф икации	наименование	код	уро вень квалиф икации
24.078 Профессиональный стандарт "Специалист-исследо ватель в области ядерно-энергетическ их технологий"		Выработка направлений прикладных научно-исследовател ьских и опытно-конструктор ских работ по совершенствованию ядерно-энергетическ их технологий и руководство	7	Руководство и управление деятельностью персонала и обеспечение безопасного проведения научно-исследовательских и опытно-конструктор ских работ	B/01.7	7
		деятельностью подчиненного персонала по их выполнению		Обобщение результатов, проводимых научно-исследовател ьских и опытно-конструктор ских работ с целью выработка предложений по разработке новых и усовершенствованию действующих ядерно-энергетическ их технологий	B/02.7	7
40.011 Профессиональный стандарт "Специалист по научно-исследователь ским и опытно-конструкторс ким разработкам"	Hi 60 61 61 62 62	Проведение научно-исследовател ьских и опытно-конструктор ских разработок при исследовании самостоятельных тем	6	Проведение патентных исследований и определение характеристик продукции (услуг)	B/01.6	6
				Руководство группой работников при исследовании самостоятельных тем	B/03.6	6
				Проведение работ по обработке и анализу научно-технической информации и результатов исследований	B/02.6	6

4. Требования к результатам освоения образовательной программы

В результате освоения основной образовательной программы у выпускника должны быть сформированы универсальные, общепрофессиональные и профессиональные компетенции.

Универсальные компетенции выпускников и индикаторы их достижения:

	ии выпускников и индикаторы их достижения.
Код и наименование компетенции	* **
УК-1 Способен осуществлять	УК-1.1 Анализирует проблемную ситуацию как систему, выявляя ее
критический анализ проблемных	составляющие и связи между ними
ситуаций на основе системного	УК-1.2 Осуществляет поиск вариантов решения поставленной проблемной
подхода, вырабатывать	ситуации на основе доступных источников информации
стратегию действий	УК-1.3 Разрабатывает стратегию достижения поставленной цели как
	последовательность шагов, предвидя результат каждого из них и оценивая
	их влияние на внешнее окружение планируемой деятельности и на
	взаимоотношения участников этой деятельности
УК-2 Способен управлять	УК-2.1 Формулирует в рамках обозначенной проблемы, цель, задачи,
исследовательским проектом на	актуальность, значимость (научную, практическую, методическую и иную в
всех этапах его реализации	зависимости от типа проекта), ожидаемые результаты и возможные сферы
poor orange ero pourmoughn	их применения
	УК-2.2 Способен прогнозировать результат деятельности и планировать
	последовательность шагов для достижения данного результата. Формирует
	план-график реализации проекта в целом и план контроля его выполнения
	УК-2.3 Способен организовать и координировать работу участников
	проекта, обеспечивать работу команды необходимыми ресурсами
	УК-2.4 Представляет публично результаты проекта (или отдельных его
	этапов) в форме отчетов, статей, выступлений на научно-практических
VIC 2 C	конференциях, семинарах и т.п.
УК-3 Способен организовывать и	УК-3.1 Организует и координирует работу участников проекта, способствует
руководить работой команды,	конструктивному преодолению возникающих разногласий и конфликтов
вырабатывая командную	УК-3.2 Учитывает в своей социальной и профессиональной деятельности
стратегию для достижения	интересы, особенности поведения и мнения (включая критические) людей, с
поставленной задачи	которыми работает/взаимодействует, в том числе посредством
	корректировки своих действий
	УК-3.3 Способен предвидеть результаты (последствия) как личных, так и
	коллективных действий
	УК-3.4 Способен планировать командную работу, распределять поручения
	членам команды, организовать обсуждение разных идей и мнений
УК-4 Способен применять	УК-4.1 Способен вести обмен деловой информацией в устной и письменной
современные коммуникативные	формах на государственном языке Российской Федерации и не менее чем на
технологии, в том числе на	одном иностранном языке
иностранном(ых) языке(ах), для	УК-4.2 Владеет навыками, необходимыми для написания, письменного
академического и	перевода и редактирования различных академических текстов (рефератов,
профессионального	эссе, обзоров, статей и т.д.)
взаимодействия	УК-4.3 Способен представлять результаты академической и
	профессиональной деятельности на различных научных мероприятиях,
	включая международные
	УК-4.4 Способен использовать современные средства
	информационно-коммуникационных технологий для академического и
	профессионального взаимодействия
УК-5 Способен анализировать и	УК-5.1 Способен выявлять специфику философских и научных традиций
учитывать разнообразие культур	основных мировых культур
в процессе межкультурного	УК-5.2 Способен определять теоретическое и практическое значение
в процессе межкультурного взаимодействия	культурно-языкового фактора при взаимодействии различных философских
взаимодеиствия	культурно-языкового фактора при взаимодеиствии различных философских и научных традиций

УК-6 Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки

УК-6.1 Умеет решать задачи собственного личностного и профессионального развития, определять и реализовывать приоритеты совершенствования собственной деятельности УК-6.2 Оценивает свою деятельность, соотносит цели, способы и средства выполнения деятельности с её результатами

Общепрофессиональные компетенции выпускников и индикаторы их достижения:

TC	Te		
Код и наименование компетенции	^		
ОПК-1 Способен формулировать	ОПК-1.1 Имеет представление о современном состоянии исследований в		
цели и задачи исследования,	рамках тематической области своей профессиональной деятельности		
выбирать критерии оценки,	ОПК-1.2 Способен составлять общий план работы по заданной теме,		
выявлять приоритеты решения	предлагать методы исследования и способы обработки результатов,		
задач	проводить исследования по согласованному с руководителем плану,		
	представлять полученные результаты		
	ОПК-1.3 Владеет систематическими знаниями по направлению		
	деятельности; углубленными знаниями по выбранной направленности		
	подготовки, базовыми навыками проведения научно- исследовательских		
	работ по предложенной теме		
ОПК-2 Способен применять	ОПК-2.1 Способен применять знания и навыки по использованию		
современные методы	информационно-коммуникационных технологий для поиска и изучения		
исследования, оценивать и	научной литературы, применения прикладных программных продуктов		
представлять результаты	ОПК-2.2 Способен обобщать и критически оценивать опыт и результаты		
выполненной работы	научных исследований в области профессиональной деятельности		
	ОПК-2.3 Способен аргументировано выбирать способ проведения научного		
	исследования, применять знания в области профессиональной деятельности		
	для решения поставленной задачи, формулирования выводов и оценки		
	полученных результатов		
ОПК-3 Способен оформлять	ОПК-3.1 Владеет профессиональной терминологией, используемой в		
результаты	современной научно-технической литературе, обладает навыками устного и		
научно-исследовательской	письменного изложения результатов научной деятельности в рамках		
деятельности в виде статей,	профессиональной коммуникации		
докладов, научных отчетов и	ОПК-3.2 Владеет навыками оформления результатов		
презентаций с использованием	научно-исследовательской деятельности в виде статей, докладов, научных		
систем компьютерной верстки и	отчетов и презентаций с использованием систем компьютерной верстки и		
пакетов офисных программ	пакетов офисных программ		

Профессиональные компетенции выпускников и индикаторы их достижения:

Код и наименование	Код и наименование индикатора достижения	Основание (ПС, анализ		
компетенции	компетенции	иных требований,		
		предъявляемых к		
		выпускникам)		
тип задач профессиональной деятельности: научно-исследовательский				
ПК-1 Способен к созданию	ПК-1.1 Знает физическое описание явлений и	Специалист-исследователь в		
теоретических и	процессов в области ядерной физики и технологий	области		
математических моделей в	ПК-1.2 Умеет создавать теоретические и	ядерно-энергетических		
области ядерной физики и	математические модели в области ядерной физики и	технологий		
технологий	технологий			
	ПК-1.3 Владеет навыками работы с современными			
	расчетными программными средствами			

ПК-2 Готов применять	ПК-2.1 Знает методы исследования и расчета	Специалист-исследователь в
методы исследования и	процессов, происходящих в современных	области
расчета процессов,	физических установках и устройствах в области	ядерно-энергетических
происходящих в	ядерной физики и технологий	технологий
современных физических	ПК-2.2 Умеет рассчитывать и проводить	
установках и устройствах в	исследования процессов, протекающих в	
области ядерной физики и	современных физических установках и устройствах	
технологий	в области ядерной физики и технологий	
	ПК-2.3 Владеет навыками использования	
	информационных технологий и пакетов	
	прикладных программ при проектировании и	
	расчете устройств или объектов (установок,	
	материалов, приборов) в своей предметной области	
	ПК-2.4 Способен самостоятельно планировать и	
	проводить научные исследования самостоятельно	
	или в составе научного коллектива	
ПК-3 Способен объективно	ПК-3.1 Знает современный уровень развития науки	Специалист по
оценить предлагаемое	и технологии, профессиональные проблемы в своей	научно-исследовательским
решение или проект по	предметной области	и опытно-конструкторским
отношению к современному	ПК-3.2 Умеет соотносить предполагаемое решение	разработкам
мировому уровню,	или проект с современным мировым уровнем	
подготовить экспертное	ПК-3.3 Владеет навыками экспертной оценки	
заключение	предлагаемых решений или проектов	

5. Учебный план

Учебный план (Приложение 1) определяет перечень, трудоемкость, последовательность и распределение по периодам обучения учебных дисциплин (модулей), практик, иных видов учебной деятельности, формы промежуточной и итоговой аттестации обучающихся. Трудоемкость образовательной программы устанавливается в зачетных единицах.

Объем обязательной части, без учета объема государственной итоговой аттестации, составляет 75 процентов общего объема программы.

Матрица соответствия компетенций дисциплинам учебного плана приведена в Приложении 2.

6. Календарный учебный график

Календарный учебный график (Приложение 3) отражает распределение видов учебной деятельности, периодов аттестации обучающихся и каникул по годам обучения (курсам) и в рамках каждого учебного года. Календарный учебный график образовательной программы высшего образования включает 96 5/6 недели, из которых 59 4/6 недели теоретического и практического обучения, 17 4/6 недели зачетно-экзаменационного периода, 3 1/6 недели государственной итоговой аттестации и 16 2/6 недели каникул.

7. Рабочие программы дисциплин (модулей)

Рабочие программы дисциплин (модулей), включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 4.

8. Программы практик

Образовательной программой предусмотрены следующие практики: научно-исследовательская работа: производственная практика.

Рабочие программы практик, включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 5.

9. Программа государственной итоговой аттестации

В составе государственной итоговой аттестации обучающихся предусмотрены:

выполнение и защита выпускной квалификационной работы.

Программа государственной итоговой аттестации (Приложение 6) включает требования к выпускным квалификационным работам (объему, структуре, оформлению, представлению), порядку их выполнения, процедуру защиты выпускной квалификационной работы, критерии оценки результатов.

10. Материально-техническое и учебно-методическое обеспечение образовательной программы

Рабочие программы дисциплин (модулей), практик определяют материально-техническое и учебно-методическое обеспечение образовательной программы, включая перечень лицензионного и свободно распространяемого программного обеспечения, перечень электронных учебных изданий и (или) печатных изданий, электронных образовательных ресурсов, перечень и состав современных профессиональных баз данных и информационных справочных систем.

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей) и практик.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду МФТИ.

Электронная информационно-образовательная среда МФТИ обеспечивает доступ:

– к ЭБС:

ЭБС «Университетская библиотека онлайн»: раздел «Золотой фонд научной классики».

"Book on Lime" издательства «Книжный дом университета»;

ЭБС издательства «Лань»;

ЭБС издательства «Юрайт»;

ЭБС издательства «IBooks.ru»;

ЭБС ZNANIUM

доступ к ресурсам books.mipt.ru;

доступ к фондам Национальной электронной библиотеки.

- к научным зарубежным и российским журналам и электронным базам данных:

база данных «Успехи физических наук» (Автономная некоммерческая организация Редакция журнала «Успехи физических наук»);

журналы РАН (Российская академия наук);

журналы Математического института им. В. А. Стеклова Российской академии наук: Математические журналы (mathnet.ru): Известия Российской академии наук. Серия математическая, Математический сборник, Успехи математических наук;

электронная версия журнала «Квантовая электроника» (Физический институт им. П.Н. Лебедева Российской академии наук);

российские журналы на платформе East View компании ИВИС;

база данных полнотекстовая коллекция журналов Bentham Journal Collection (Bentham Science Publishers);

база данных EDP Sciences

база данных EBSCO eBooks (EBSCO Information Services GmbH);

база данных Wiley Journal Database;

архивная коллекция журналов Wiley Journal Backfiles (2005-2013 гг.);

архивная коллекция журналов Wiley Journal Backfiles (2014 -2022 гг.);

база данных World Scientific Complete eJournal Collection (World Scientific Publishing Co Pte Ltd.

В учебном процессе используется программное обеспечение, современные профессиональные

базы данных и информационные справочные системы, находящееся в открытом доступе, общедоступные электронные учебные издания либо печатные издания из библиотек МФТИ и базовых организаций.

11. Особенности реализации образовательной программы для инвалидов и лиц с ограниченными возможностями здоровья

При наличии в контингенте обучающихся по образовательной программе инвалидов и лиц с ограниченными возможностями здоровья образовательная программа адаптируется с учетом особых образовательных потребностей таких обучающихся. При обучении по индивидуальному учебному плану лиц с ограниченными возможностями здоровья срок освоения образовательной программы может быть увеличен по их желанию не более чем на один год по сравнению со сроком получения образования для соответствующей формы обучения.

12. Кадровые условия реализации образовательной программы

Педагогические работники, обеспечивающие обучение профильным дисциплинам образовательной программы, являются высококвалифицированными специалистами в области физики элементарных частиц, нейтринной астрофизики и физики нейтрино, физики атомного ядра, нейтронной физики, физики и техники сильноточных ускорителей на средние и промежуточные энергии, прикладной ядерной физики, в суперкомпьютерном моделировании в фундаментальной и прикладной квантовой физике.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих образование, соответствующее профилю преподаваемой дисциплины (модуля), в общем числе научно-педагогических работников, реализующих программу магистратуры, составляет более 70 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих ученую степень (в том числе ученую степень, присвоенную за рубежом и признаваемую в Российской Федерации) и (или) ученое звание (в том числе ученое звание, полученное за рубежом и признаваемое в Российской Федерации), в общем числе научно-педагогических работников, реализующих программу магистратуры, составляет более 60 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок) из числа руководителей и работников, деятельность которых связана с направленностью (профилем) реализуемой программы магистратуры (имеющих стаж работы в данной профессиональной области более 3 лет) в общем числе работников, реализующих программу магистратуры, составляет более 5 процентов.

Общее руководство научным содержанием программы магистратуры осуществляется д-ром Валентиновичем, Либановым Максимом чл.-кор. PAHосуществляющим самостоятельные научно-исследовательские проекты и участвующим в осуществлении таких проектов направлению подготовки, имеющим ежегодные публикации по результатам указанной научно-исследовательской деятельности в ведущих отечественных и зарубежных рецензируемых научных журналах и изданиях, а также осуществляющим ежегодную апробацию результатов научно-исследовательской деятельности указанной на национальных международных конференциях.

Либанов Максим Валентинович – лауреат Золотой медали РАН с премией для молодых ученых за цикл работ «Иерархия фермионных масс в моделях с дополнительными пространственными измерениями» (2006), премий фонда «Династия» и других. В 2016 году ему присвоено почетное звание «Профессор РАН». В 2020 году занесен в Книгу почета ИЯИ РАН. Общим собранием членов РАН 1-2 июня 2022 года избран член-корреспондентом РАН.

Область научных интересов: квантовая теория поля, физика элементарных частиц, космология. Является автором одного учебного пособия и более 50 научных работ, в том числе 47 статей, индексированных в WOS, h-index 19 (на 2022 год). Ему принадлежат работы по физике за пределами

Стандартной модели, модифицированным теориям гравитации и моделям развития ранней Вселенной.

Преподавательская деятельность: читает курсы лекций на физическом факультете МГУ и в МФТИ. Под его научным руководством были защищены кандидатская диссертация, диссертации на соискание учёных степеней магистра и бакалавра.

Участие в научных и общественных организациях: член Учёного совета ИЯИ РАН, член редколлегии журнала ТМФ, член экспертного совета Фонда поддержки фундаментальной физики, входит в состав оргкомитета международного семинара «Кварки». На протяжении 5 лет Либанов М.В. являлся председателем Совета молодых учёных ИЯИ РАН.

Основные научные достижения:

- в рамках теорий с дополнительными измерениями впервые предложено естественное объяснение происхождения трёх фермионных поколений, а также наблюдаемого отличия массовой матрицы заряженных фермионов от массовой матрицы нейтрино. Сделаны предсказания, которые будут проверяться в идущих и планируемых экспериментах, в том числе, на Большом адронном коллайдере;
- предложены модели с нарушением Лоренц-инвариантности, позволяющие объяснить наблюдаемое современное ускоренное расширение Вселенной. Сделан ряд предсказаний, позволяющих подтвердить или опровергнуть эти модели;
- впервые предложен механизм генерации первичных скалярных возмущений во Вселенной, отличный от инфляционного.

Публикации по тематике образовательной программы:

- 1. Toward a quantum field theoretical description of oscillation effects. //Maxim Libanov. International Journal of Modern Physics A (2024)
- 2. Flavour puzzle or why neutrinos are different? //Libanov, M. and Ling, F.-S. Proceedings of the Rencontres de Moriond Electroweak Interactions and Unified Theories, EW (2020).
- 3. On the impact of magnetic-field models in galaxy clusters on constraints on axion-like particles from the lack of irregularities in high-energy spectra of astrophysical sources. //Libanov, M; Troitsky, S. Physics Letters B 802 (2020) 135252.

13. Сведения о кафедрах, участвующих в реализации образовательной программы

кафедра плазменной энергетики: заведующий кафедрой – д-р физ.-мат. наук Красильников Анатолий Витальевич, директор Проектного центра ИТЭР. Направление научной подготовки студентов и аспирантов кафедры плазменной энергетики охватывает широкий спектр исследований, успешно проводимых в ГНЦ РФ ТРИНИТИ и обладающих, как правило, высокой степенью новизны, актуальностью и обширной сферой применимости. Эти исследования имеют фундаментальное значение как для физики низкотемпературной и высокотемпературной плазмы, так и для целого ряда чрезвычайно важных областей науки и техники прикладного и поискового характера.

Базовые организации:

Акционерное общество «Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований». Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований является известным в России и за рубежом своими результатами и достижениями центром научных исследований в области управляемого термоядерного синтеза, физики плазмы, лазерной физики и техники. В институте за годы его существования создан уникальный по объему и характеристикам парк экспериментальных комплексов, стендов, установок и оборудования, которые позволяют выполнять широкую программу, как по фундаментальным исследованиям физических процессов, так и отрабатывать технические вопросы по созданию объектов, предназначенных для практического применения. Эта уникальная экспериментально-стендовая база позволяет не только получать результаты, имеющие важное научное и прикладное значение, но и обеспечивает России лидирующее

положение в мире в области управляемого термоядерного синтеза, физики плазмы, физики и техники мощных лазеров, плазменной энергетики. Высокий уровень получаемых научных результатов и имеющаяся уникальная экспериментальная стендовая база привлекают к ГНЦ РФ ТРИНИТИ интерес крупных институтов и фирм из США, Англии, Германии, Италии, Японии, Франции, Китая и др.

Частное учреждение Государственной корпорации по атомной энергии «Росатом» «Проектный Центр-ИТЭР» Частное учреждение Государственной корпорации по атомной энергии «Росатом» «Проектный Центр-ИТЭР» – российское Агентство ИТЭР отвечает за разработку и поставку основных систем реактора, высокотехнологичного оборудования и ряда диагностических систем. В настоящее время Госкорпорация «Росатом» и Международная организация ИТЭР рассматривают комплекс мер по расширению сотрудничества в области подготовки кадров для сооружения и эксплуатации экспериментального термоядерного реактора, а также организации совместных научных исследований в рамках международной программы ИТЭР.

кафедра фундаментальных взаимодействий и космологии: заведующий кафедрой – д-р физ.-мат. наук, чл.-кор. РАН Либанов Максим Валентинович, директор Института ядерных исследований РАН. В последние годы при непосредственном участии сотрудников, аспирантов, студентов и выпускников кафедры решены многие важные задачи, в том числе выполнены пионерские работы в моделях физики частиц с «миром на бране» (дополнительными пространственными измерениями). Исследована феноменология и предложены методы поиска частиц скрытого сектора, ответственного за спонтанное нарушение суперсимметрии в обобщениях Стандартной модели физики частиц. Предложено объяснение аномальных событий в эксперименте НурегСР как сигнала от этих частиц. Группа ИЯИ РАН (в которую входят студенты и преподаватели кафедры) в составе международного эксперимента Т2К обнаружила новой тип осцилляций нейтрино.

Базовые организации:

Федеральное государственное бюджетное учреждении науки Институт ядерных исследований Российской академии наук является одним из ведущих ядерно-физических центров. Широкую известность получили исследования теоретиков ИЯИ в области изучения происхождения Вселенной, Солнца, взаимосвязи физики элементарных частиц и космологии. Институт обладает уникальными экспериментальными комплексами, таким как Баксанский подземный сцинтилляционный телескоп; Байкальский глубоководный нейтринный телескоп; Линейный ускоритель ионов водорода и импульсный источник нейтронов и другие. Институт участвует в проекте НИКА (ОИЯИ) и ряде международных коллабораций, а также проводит разработки по ядерной медицине. В 2021-2023 гг. в ИЯИ РАН была создана экспериментальная установка и проведены первые измерения поляризационных корреляций аннигиляционных фотонов в различных квантовых состояниях. Современные теоретические описания данных процессов являются противоречивыми и требуют экспериментальной проверки. Полученные экспериментальные результаты фундаментальный характер, непосредственно касающийся теории квантовых измерений, так и чисто прикладной, связанный с исследованием возможности создания квантовых позитрон-эмиссионных томографов.

кафедра проблем инерционного термоядерного синтеза: заведующий кафедрой – д-р физ.-мат. наук, акад. РАН Илькаев Радий Иванович, почетный научный руководитель РФЯЦ ВНИИЭФ. В течение первых четырех курсов студенты проходят подготовку на базе МФТИ, после окончания 4 курса студентам, успешно защитившим дипломный проект, выдается диплом бакалавра естественных наук МФТИ. Подготовка студентов пятого и шестого курса осуществляется в г. Сарове на базе института лазерно-физических исследований (ИЛФИ), где будет проходить обучение по специальным дисциплинам, соответствующим основным направлениям работ базовой организации, а также научно-исследовательская работа (НИР), которая выполняется под руководством научного руководителя по индивидуальному плану в лабораториях ИЛФИ. При приеме на работу РФЯЦ-ВНИИЭФ гарантирует выпускнику вуза работу по специальности, освобождение от службы в рядах вооруженных сил РФ.

Базовые организации:

Федеральное государственное унитарное предприятие «Российский Федеральный ядерный центр Всероссийский научно-исследовательский институт экспериментальной физики». В РФЯЦ-ВНИИЭФ интенсивно ведутся работы по повышению технических характеристик, эффективности, безопасности и надежности ядерного оружия. В современных условиях действия Договора о всеобъемлющем испытаний основные направления исследований запрещении ядерных ПО решению расчетно-теоретических, ядерно-оружейных задач сосредоточены конструкторских экспериментальных подразделениях института.

кафедра фундаментальных и прикладных проблем физики микромира: заведующий кафедрой – д-р физ.-мат. наук, проф., чл.-кор. РАН Казаков Дмитрий Игоревич, директор лаборатории теоретической физики ОИЯИ РАН. Научные исследования проводятся как на базовых установках ОИЯИ (нуклотрон, фазотрон, импульсный реактор ИБР-2М и источник нейтронов IREN, ускорители тяжелых ионов и др.), так и в рамках международного сотрудничества на ускорителях СЕRN, DESY, GSI, Fermilab, других ведущих мировых центров. Студенты кафедры могут принять участие в экспериментах на LHC, а также в международных проектах FAIR и XFEL. Важное место в научной программе Института занимают эксперименты по изучению свойств ядерной материи на строящемся в ОИЯИ коллайдере NICA в Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина, по синтезу сверхтяжелых элементов в Лаборатории ядерных реакций им. Г.Н. Флерова и по исследованию в области физики конденсированного состояния на импульсном реакторе ИБР-2М в Лаборатории нейтронной физики им. И.М. Франка. Анализ итогов деятельности кафедры показал, что почти 80% всех выпускников кафедры, успешно завершивших обучение, нашли свое место в науке, и половина из них – в ОИЯИ.

Базовые организации:

Объединенный институт ядерных исследований. Объединенный институт ядерных исследований международная межправительственная организация, членами которой сегодня являются 16 государств. Это всемирно известный научный центр, являющий собой уникальный пример успешной интеграции фундаментальных теоретических и экспериментальных исследований с разработкой и применением новейших технологий и университетским образованием. Основные направления теоретических и экспериментальных исследований в ОИЯИ: физика элементарных частиц, ядерная физика и физика конденсированных сред. Экспериментальная база ОИЯИ позволяет проводить не только передовые фундаментальные исследования, но и прикладные, направленные на разработку и создание новых ядерно-физических и информационных технологий. Институт располагает замечательным набором экспериментальных физических установок: единственным в Европе и Азии сверхпроводящим ускорителем ядер и тяжелых ионов – нуклотроном, циклотронами тяжелых ионов У-400 и У-400М с рекордными параметрами пучков для проведения экспериментов по синтезу тяжелых и экзотических ядер, уникальным нейтронным импульсным реактором ИБР-2, используемым для исследований по нейтронной ядерной физике и физике конденсированных сред, и ускорителем протонов – фазотроном, который используется для лучевой терапии. Наряду с «домашними» работами ОИЯИ продолжает свое участие в крупных международных проектах (LHC, FAIR, XFEL), исследовательских программах на ускорителях RHIC и тэватрон (США), входит в число участников проекта по сооружению международного линейного коллайдера ILC. Объединенный институт активно сотрудничает с Европейской организацией ядерных исследований (ЦЕРН) в решении многих теоретических и экспериментальных задач физики высоких энергий. Сегодня физики ОИЯИ участвуют в работах 20 проектов ЦЕРН.