Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ливанов Дмитрий Викторович

Должность: Ректор

Дата подписания: 02.07.2025 14:43:26 Уникальный программный ключ:

c6d909c49c1d2034fa3a0156c4eaa51e7232a3a2

Утверждена решением Ученого совета МФТИ от 27 марта 2025 г. (протокол № 01/03/2025)

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Уровень высшего образования МАГИСТР

Направление подготовки 06.04.01 БИОЛОГИЯ

Направленность (профиль) БИОЛОГИЯ И БИОИНФОРМАТИКА

Год начала обучения по образовательной программе 2025 г.

Основная образовательная программа высшего образования по направлению подготовки 06.04.01 Биология, направленность (профиль) Биология и биоинформатика, реализуемая в МФТИ, представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики образовательной программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных и методических материалов. Основная образовательная программа высшего образования создана на основе образовательного стандарта по направлению подготовки 06.04.01 Биология, самостоятельно разработанного и утвержденного МФТИ.

1. Общая характеристика образовательной программы

Квалификация, присваиваемая выпускникам: магистр.

Форма обучения: очная.

Срок получения образования: 2 года.

Объем образовательной программы составляет 120 зачетных единиц и включает все виды аудиторной и самостоятельной работы обучающегося, практики, время, отводимое на контроль качества освоения обучающимся образовательной программы.

Объем контактной работы обучающихся с преподавателями составляет не менее 934 часов.

Язык реализации программы: русский.

Использование сетевой формы реализации образовательной программы: да.

Цель программы:

Подготовка высококвалифицированных специалистов, обладающих знаниями в области биологии, биоинформатики, биохимии, биофизики, молекулярной биологии и биотехнологии, направлена на изучение принципов функционирования живых систем, их конструирования и применения. Магистранты обучаются работе с экспериментальными биологическими моделями, осваивают клеточные технологии. Изучаемые в ходе освоения программы теоретические основы и методы генетической, белковой, клеточной инженерии, биоинформатики определяют сегодня результативность новейшей биологии и в целом научно-технического прогресса.

Образовательная программа реализуется в сетевой форме совместно с базовыми органзациями ИОГен РАН, ИМБ РАН, ФГБНУ ВНИИСБ, ФГБУ ФНКЦ ФХМ ФМБА России.

2. Характеристика профессиональной деятельности выпускников: Области профессиональной деятельности и сферы профессиональной деятельности,

в которых выпускники, освоившие программу магистратуры, могут осуществлять профессиональную деятельность:

40 Сквозные профессиональной деятельности в промышленности виды chepe фундаментальных И прикладных научно-исследовательских, инновационных опытно-конструкторских разработок, а также в сфере разработки и внедрения новых технологических процессов производства перспективных материалов (в том числе композитов, метаматериалов), изделий опто-, микро- и наноэлектроники, разработки и применения электронных приборов и комплексов, а также в сфере мониторинга параметров материалов, состояния сложных технических и живых систем и состояния окружающей среды, включая разработку и использование для решения поставленных задач).

Выпускники могут осуществлять профессиональную деятельность в других областях профессиональной деятельности и (или) сферах профессиональной деятельности при условии соответствия уровня их образования и полученных компетенций требованиям квалификации работника.

Типы задач профессиональной деятельности выпускников:

научно-исследовательский.

Задачи профессиональной деятельности выпускников:

планирование и проведение научных работ и аналитических исследований в области биологии в соответствии с утвержденным направлением исследований в предметной области специализации;

подбор, обработка и анализ научно-технической и патентной информации по тематике исследования с использованием специализированных баз данных с использованием информационных технологий:

анализ показателей биологических процессов на соответствие научным разработкам и разработка программ научных исследований, оценка и анализ полученных результатов;

поиск и разработка новых эффективных путей получения биологических продуктов, создание современных разработок в области биоинформатики, математической биологии, генетических технологий, клеточных технологий;

обобщение полученных данных, самостоятельное формирование выводов и подготовка научных и аналитических отчетов, публикаций и презентаций результатов научных и аналитических исследований, квалифицированное перенесение полученных результатов научных и аналитических исследований на смежные предметные области;

планирование и самостоятельное проведение наблюдений и измерений; планирование, постановка и оптимизация проведения экспериментов в предметной области исследований, выбор эффективных методов обработки данных и их реализация;

реконструкция и модернизация действующих процессов;

создание новых методов (генетических, клеточных, биотехнологических), алгоритмов для научно-исследовательских и прикладных целей.

Объекты профессиональной деятельности выпускников, освоивших программу магистратуры:

биологические системы различных уровней организации;

биологические, биоинженерные, биомедицинские, природоохранительные технологии, биологическая экспертиза и мониторинг, оценка и восстановление территориальных биоресурсов; процессы их жизнедеятельности и эволюции.

3. Перечень профессиональных стандартов, соответствующих профессиональной деятельности выпускников:

40.011 Специалист по научно-исследовательским и опытно-конструкторским разработкам.

Код и наименование	Обобщенные трудовые функции		Трудовые функции			
профессионального стандарта	код	наименование	уро вень квалиф икации	наименование	код	уро вень квалиф икации
40.011 Профессиональный стандарт "Специалист по научно-исследователь ским и	В	Проведение научно-исследовател ьских и опытно-конструктор ских разработок при исследовании	6	Проведение работ по обработке и анализу научно-технической информации и результатов исследований	B/02.6	6
опытно-конструкторс ким разработкам"		самостоятельных тем		Руководство группой работников при исследовании самостоятельных тем	B/03.6	6

4. Требования к результатам освоения образовательной программы

В результате освоения основной образовательной программы у выпускника должны быть сформированы универсальные, общепрофессиональные и профессиональные компетенции.

Универсальные компетенции выпускников и индикаторы их достижения:

	<u> </u>		
Код и наименование компетенции	Код и наименование индикатора достижения компетенции		
УК-1 Способен осуществлять	УК-1.1 Анализирует проблемную ситуацию как систему, выявляя ее		
критический анализ проблемных			
ситуаций на основе системного	УК-1.2 Осуществляет поиск вариантов решения поставленной проблемной		
подхода, вырабатывать	ситуации на основе доступных источников информации		
стратегию действий	УК-1.3 Разрабатывает стратегию достижения поставленной цели как		
	последовательность шагов, предвидя результат каждого из них и оценивая		
	их влияние на внешнее окружение планируемой деятельности и на		
	взаимоотношения участников этой деятельности		
УК-2 Способен управлять	УК-2.1 Формулирует в рамках обозначенной проблемы, цель, задачи,		
исследовательским проектом на	актуальность, значимость (научную, практическую, методическую и иную в		
всех этапах его реализации	зависимости от типа проекта), ожидаемые результаты и возможные сферы		
	их применения		
	УК-2.2 Способен прогнозировать результат деятельности и планировать		
	последовательность шагов для достижения данного результата. Формирует		
	план-график реализации проекта в целом и план контроля его выполнения		
	УК-2.3 Способен организовать и координировать работу участников		
	проекта, обеспечивать работу команды необходимыми ресурсами		
	УК-2.4 Представляет публично результаты проекта (или отдельных его		
	этапов) в форме отчетов, статей, выступлений на научно-практических		
	конференциях, семинарах и т.п.		
УК-3 Способен организовывать и	УК-3.1 Организует и координирует работу участников проекта, способствует		
руководить работой команды,	конструктивному преодолению возникающих разногласий и конфликтов		
вырабатывая командную	УК-3.2 Учитывает в своей социальной и профессиональной деятельности		
стратегию для достижения	интересы, особенности поведения и мнения (включая критические) людей, с		
поставленной задачи	которыми работает/взаимодействует, в том числе посредством		
	корректировки своих действий		
	УК-3.3 Способен предвидеть результаты (последствия) как личных, так и		
	коллективных действий		
	УК-3.4 Способен планировать командную работу, распределять поручения		
	членам команды, организовать обсуждение разных идей и мнений		

УК-4 Способен применять	УК-4.1 Способен вести обмен деловой информацией в устной и письменной		
современные коммуникативные	формах на государственном языке Российской Федерации и не менее чем на		
технологии, в том числе на	одном иностранном языке		
иностранном(ых) языке(ах), для	УК-4.2 Владеет навыками, необходимыми для написания, письменного		
академического и	перевода и редактирования различных академических текстов (рефератов,		
профессионального	эссе, обзоров, статей и т.д.)		
взаимодействия	УК-4.3 Способен представлять результаты академической и		
	профессиональной деятельности на различных научных мероприятиях,		
	включая международные		
	УК-4.4 Способен использовать современные средства		
	информационно-коммуникационных технологий для академического и		
	профессионального взаимодействия		
УК-5 Способен анализировать и	УК-5.1 Способен выявлять специфику философских и научных традиций		
учитывать разнообразие культур	основных мировых культур		
в процессе межкультурного	УК-5.2 Способен определять теоретическое и практическое значение		
взаимодействия	культурно-языкового фактора при взаимодействии различных философских		
	и научных традиций		
УК-6 Способен определять и	УК-6.1 Умеет решать задачи собственного личностного и		
реализовывать приоритеты	профессионального развития, определять и реализовывать приоритеты		
собственной деятельности и	совершенствования собственной деятельности		
способы ее совершенствования	УК-6.2 Оценивает свою деятельность, соотносит цели, способы и средства		
на основе самооценки	выполнения деятельности с её результатами		

Общепрофессиональные компетенции выпускников и индикаторы их достижения:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен изучать,	ОПК-1.1 Умеет анализировать задачу, планировать пути решения,
анализировать, использовать	предлагать и комбинировать способы решения
биологические объекты и	ОПК-1.2 Владеет исследовательскими методами и способен использовать их
процессы, основываясь на	при решении новых задач, применяя знания из различных областей науки
математических, физических,	(техники)
химических, биологических	ОПК-1.3 Владеет аналитическими и вычислительными методами решения,
законах, закономерностях и	задач, понимает и учитывает на практике границы применимости
взаимосвязях	получаемых решений
ОПК-2 Способен использовать	ОПК-2.1 Способен применять знания и навыки по использованию
современные информационные	информационно-коммуникационных технологий для поиска и изучения
технологии, программные	научной литературы, применения прикладных программных продуктов
средства и оборудование при	ОПК-2.2 Способен к профессиональной эксплуатации современного
решении задач	технологического оборудования для осуществления биотехнологических
профессиональной деятельности	процессов
ОПК-3 Способен составлять и	ОПК-3.1 Знает основные правила оформления научных публикаций и
оформлять научные и (или)	научно-технической документации, в том числе с использованием
технические (технологические,	прикладного программного обеспечения
инновационные) отчеты	ОПК-3.2 Владеет методами визуального и графического представления
(публикации, проекты)	результатов научной (научно-технической, инновационной,
	технологической) деятельности в виде отчетов, научных публикаций
	ОПК-3.3 Владеет профессиональной терминологией, используемой в
	современной научно-технической литературе, обладает навыками устного и
	письменного изложения результатов научной деятельности в рамках
	профессиональной коммуникации
	ОПК-3.4 Владеет навыками работы с компьютером и компьютерными
	сетями с целью получения, хранения и обработки научной (технической,
	технологической) информации

ОПК-4 Способен осуществлять ОПК-4.1 Владеет методами научного поиска и интеллектуального анализа сбор и обработку информации при решении задач профессиональной деятельности научно-технической и (или) ОПК-4.2 Знает основные источники научно-технической и (или) технологической информации технологической информации в области профессиональной деятельности для решения фундаментальных и ОПК-4.3 Умеет применять информационно-коммуникационные технологии прикладных задач для поиска и анализа профессиональной информации, выделения в ней главного, структурирования, оформления и представления в виде аналитических обзоров с обоснованными выводами и рекомендациями ОПК-4.4 Умеет применять знание информационно-коммуникационных технологий для решения поставленной задачи, формулирования выводов и оценки полученных результатов ОПК-4.5 Способен адаптировать зарубежные комплексы обработки информации и автоматизированного проектирования к нуждам отечественных предприятий ОПК-5.1 Имеет представление о современном состоянии исследований в ОПК-5 Имеет представление об актуальных проблемах науки и рамках тематической области своей профессиональной деятельности техники в области своей ОПК-5.2 Способен оценивать актуальность исследований в области своей профессиональной деятельности. профессиональной деятельности и их практическую значимость способен на научном языке ОПК-5.3 Способен к постановке научно-технических задач с формулировать использованием биотехнологических процессов и соответствующего профессиональные задачи оборудования ОПК-6.1 Способен анализировать задачу, планировать пути решения, ОПК-6 Способен эксплуатировать технологическое предлагать и комбинировать способы решения оборудование, выполнять ОПК-6.2 Способен к профессиональной эксплуатации современной технологические операции. экспериментальной научно-исследовательской техники и современного технологического оборудования для осуществления биотехнологических управлять биотехнологическими процессами, проектировать процессов элементы технических и ОПК-6.3 Способен к оценке, анализу и интерпретации полученных в технологических систем, результате биотехнологических процессов данных технических объектов, ОПК-6.4 Способен к профессиональной эксплуатации и модернизации современного технологического оборудования для осуществления технологических процессов биотехнологических процессов биотехнологического производства на основе применения базовых инженерных и технологических знаний

Профессиональные компетенции выпускников и индикаторы их достижения:

Код и наименование	Код и наименование индикатора достижения	Основание (ПС, анализ		
компетенции	компетенции	иных требований,		
		предъявляемых к		
		выпускникам)		
тип задач профессиональной деятельности: научно-исследовательский				
ПК-1 Способен ставить,	ПК-1.1 Способен находить, анализировать и	Специалист по		
формализовывать и решать	обобщать информацию об актуальных результатах	научно-исследовательским		
задачи, в том числе	1	и опытно-конструкторским		
разрабатывать и исследовать	профессиональной деятельности	разработкам		
математические модели	ПК-1.2 Способен выдвигать гипотезы, оценивать			
изучаемых явлений и	качество разработанной модели			
процессов, системно	ПК-1.3 Способен применять теоретические и (или)			
анализировать научные	экспериментальные методы исследований к			
проблемы, получать новые	конкретной научной задаче и интерпретировать			
научные результаты	полученные результаты			
	ПК-1.4 Владеет методами наблюдения, описания,			
	идентификации и научной классификации			
	биологических объектов			

ПК-2 Способен	ПК-2.1 Способен планировать и проводить научные	Специалист по
самостоятельно или в	исследования самостоятельно или в составе	научно-исследовательским
качестве члена	научного коллектива	и опытно-конструкторским
(руководителя) малого	ПК-2.2 Способен проводить апробацию результатов	разработкам
коллектива организовывать	научно-исследовательской работы посредством	
и проводить научные	публикации научных статей и участия в	
исследования и их	конференциях	
апробацию	ПК-2.3 Способен выбирать и применять подходящее	
	оборудование, инструменты и методы исследований	
	для решения задач в избранной предметной области	
ПК-3 Способен	ПК-3.1 Владеет методами статистической	Специалист по
анализировать полученные в	обработки и анализа научных данных	научно-исследовательским
ходе	ПК-3.2 Умеет находить ключевые параметры,	и опытно-конструкторским
научно-исследовательской	определяющие изучаемое явление, и производить	разработкам
работы данные и делать	численные оценки по порядку величины	
научные выводы	ПК-3.3 Способен представлять научные	
(заключения)	утверждения, их обоснования и доказательства,	
	научные проблемы и их решения ясно и точно в	
	терминах, понятных для профессиональной	
	аудитории, в письменной и устной форме	

5. Учебный план

Учебный план (Приложение 1) определяет перечень, трудоемкость, последовательность и распределение по периодам обучения учебных дисциплин (модулей), практик, иных видов учебной деятельности, формы промежуточной и итоговой аттестации обучающихся. Трудоемкость образовательной программы устанавливается в зачетных единицах.

Объем обязательной части, без учета объема государственной итоговой аттестации, составляет 73,33 процента общего объема программы.

Матрица соответствия компетенций дисциплинам учебного плана приведена в Приложении 2.

6. Календарный учебный график

Календарный учебный график (Приложение 3) отражает распределение видов учебной деятельности, периодов аттестации обучающихся и каникул по годам обучения (курсам) и в рамках каждого учебного года. Календарный учебный график образовательной программы высшего образования включает 97 недел , из которых 59 4/6 недели теоретического и практического обучения, 17 5/6 недели зачетно-экзаменационного периода, 3 1/6 недели государственной итоговой аттестации и 16 2/6 недели каникул.

7. Рабочие программы дисциплин (модулей)

Рабочие программы дисциплин (модулей), включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 4.

8. Программы практик

Образовательной программой предусмотрены следующие практики:

научно-исследовательская работа: производственная практика.

Рабочие программы практик, включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 5.

9. Программа государственной итоговой аттестации

В составе государственной итоговой аттестации обучающихся предусмотрены:

выполнение и защита выпускной квалификационной работы.

Программа государственной итоговой аттестации (Приложение 6) включает требования к выпускным квалификационным работам (объему, структуре, оформлению, представлению), порядку их выполнения, процедуру защиты выпускной квалификационной работы, критерии оценки результатов.

10. Материально-техническое и учебно-методическое обеспечение образовательной программы

Рабочие программы дисциплин (модулей), практик определяют материально-техническое и учебно-методическое обеспечение образовательной программы, включая перечень лицензионного и свободно распространяемого программного обеспечения, перечень электронных учебных изданий и (или) печатных изданий, электронных образовательных ресурсов, перечень и состав современных профессиональных баз данных и информационных справочных систем.

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей) и практик.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду МФТИ.

Электронная информационно-образовательная среда МФТИ обеспечивает доступ:

– к ЭБС:

ЭБС «Университетская библиотека онлайн»: раздел «Золотой фонд научной классики».

"Book on Lime" издательства «Книжный дом университета»;

ЭБС издательства «Лань»;

ЭБС издательства «Юрайт»;

ЭБС издательства «IBooks.ru»;

ЭБС ZNANIUM

доступ к ресурсам books.mipt.ru;

доступ к фондам Национальной электронной библиотеки.

- к научным зарубежным и российским журналам и электронным базам данных:

база данных «Успехи физических наук» (Автономная некоммерческая организация Редакция журнала «Успехи физических наук»);

журналы РАН (Российская академия наук);

журналы Математического института им. В. А. Стеклова Российской академии наук: Математические журналы (mathnet.ru): Известия Российской академии наук. Серия математическая, Математический сборник, Успехи математических наук;

электронная версия журнала «Квантовая электроника» (Физический институт им. П.Н. Лебедева Российской академии наук);

российские журналы на платформе East View компании ИВИС;

база данных полнотекстовая коллекция журналов Bentham Journal Collection (Bentham Science Publishers);

база данных EDP Sciences

база данных EBSCO eBooks (EBSCO Information Services GmbH);

база данных Wiley Journal Database;

архивная коллекция журналов Wiley Journal Backfiles (2005-2013 гг.);

архивная коллекция журналов Wiley Journal Backfiles (2014 -2022 гг.);

база данных World Scientific Complete eJournal Collection (World Scientific Publishing Co Pte Ltd.

При изучении дисциплин базовых кафедр, а также при прохождении всех видов практик используется материально-техническое обеспечение и литература базовых организаций, в структуре которых функционируют базовые кафедры, привлекаемые к учебному процессу в рамках настоящей образовательной программы.

11. Особенности реализации образовательной программы для инвалидов и лиц с ограниченными возможностями здоровья

При наличии в контингенте обучающихся по образовательной программе инвалидов и лиц с ограниченными возможностями здоровья образовательная программа адаптируется с учетом особых образовательных потребностей таких обучающихся. При обучении по индивидуальному учебному плану лиц с ограниченными возможностями здоровья срок освоения образовательной программы может быть увеличен по их желанию не более чем на один год по сравнению со сроком получения образования для соответствующей формы обучения.

12. Кадровые условия реализации образовательной программы

Педагогические работники, обеспечивающие обучение профильным дисциплинам образовательной программы, являются высококвалифицированными специалистами в сфере биофизики, молекулярной биологии и биотехнологии, осуществляющими свою профессиональную деятельность в ИОГен РАН, ИМБ РАН, ФГБНУ Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих образование, соответствующее профилю преподаваемой дисциплины (модуля), в общем числе научно-педагогических работников, реализующих программу магистратуры, составляет более 70 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих ученую степень (в том числе ученую степень, присвоенную за рубежом и признаваемую в Российской Федерации) и (или) ученое звание (в том числе ученое звание, полученное за рубежом и признаваемое в Российской Федерации), в общем числе научно-педагогических работников, реализующих программу магистратуры, составляет более 60 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок) из числа руководителей и работников, деятельность которых связана с направленностью (профилем) реализуемой программы магистратуры (имеющих стаж работы в данной профессиональной области более 3 лет) в общем числе работников, реализующих программу магистратуры, составляет более 5 процентов.

Общее руководство научным содержанием программы магистратуры осуществляется PhD (канд. биол. наук) Носовым Георгием Андреевичем, осуществляющим самостоятельные научно-исследовательские проекты и участвующим в осуществлении таких проектов по направлению подготовки, имеющим ежегодные публикации по результатам указанной научно-исследовательской деятельности в ведущих отечественных и зарубежных рецензируемых научных журналах и изданиях, а также осуществляющим ежегодную апробацию результатов указанной научно-исследовательской деятельности на национальных и международных конференциях.

Носов Георгий Андреевич – PhD (кандидат биологических наук).

Ключевые достижения:

Разработаны микрочипы для определения патогенов картофеля на ДНК-тест системе «Ариадна».

Составлены комплекты теоретических и практических заданий, а также контрольно-измерительных материалов для регионального и заключительного этапов восьми ВсОШ по биологии (2013-2022 гг.). Защищена диссертация на соискание степени PhD (Доктор философии) в Университете Мюнстера на тему "Nano-scale dynamics of synaptic proteins in the presynaptic plasma membrane" с отметкой "magna cum laude".

Проведены практикумы на четырех предметных биологических сменах (2018-2022 гг).

Организован и проведен всероссийский онлайн-фестиваль «Гены и Геномы», в котором приняло участие более 4000 участников из России и стран ближнего зарубежья.

Научный руководитель Февральской естественно-научной образовательной программы (2021 г).

Руководитель команды магистров, занявших первое место на Курчатовском хакатоне по

биоинформатике за разработку алгоритмов предсказания мишеней микроРНК (Unona).

Руководитель команды Phystech Moscow, участвующей в международном конкурсе iGEM 2021.

Член центральной методической комиссии и жюри заключительного этапа Всероссийской олимпиады школьников по биологии.

Член ЦПМК и жюри Всероссийской олимпиады школьников по биологии 2014-2022 годы.

Преподаватель предметных смен образовательного центра «Сириус» 2016-2022 годы.

Руководитель февральской естественнонаучной образовательной программы образовательного центра «Сириус» 2021 года.

Руководитель Летней биологической школы 2018-2022 годы.

Руководитель осуществляет публикационную активность в сферах, соответствующих тематике образовательной программы.

В частности, он является соавтором следующих публикаций:

1.РОЛЬ ПЕРОКСИДА ВОДОРОДА И РЕДОКС-ЗАВИСИМОГО РЕМОДЕЛИРОВАНИЯ ЦИТОСКЕЛЕТА В НАРУШЕНИИ ФУНКЦИЙ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА Шувалова М.Л., Носов Г.А., Мощенко А.А., Белоусов В.В.

В книге: Сборник тезисов XXIV съезда физиологического общества им. И. П. Павлова. Санкт-Петербург, 2023. С. 104.

2. НОВЫЕ ОПТОГЕНЕТИЧЕСКИЕ СИСТЕМЫ КОНТРОЛЯ РН СИНАПТИЧЕСКИХ ВЕЗИКУЛ Багаева Д.Ф., Носов Г.А., Власова А.Д., Бухалович С.М., Ильинский Н.С., Горделий В.И.

В книге: Оптогенетика+ 2023. Сборник научных трудов. Тезисы докладов III Всероссийской научной конференции с международным участием и Школы по современным методам неинвазивного контроля нейрональной активности. Под общей редакцией М.Л. Фирсова. Санкт-Петербург, 2023. С. 12.

3. ИЗУЧЕНИЕ ВЛИЯНИЯ ПЕРОКСИДА ВОДОРОДА НА ФУНКЦИОНИРОВАНИЕ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА С ИСПОЛЬЗОВАНИЕМ ГЕНЕТИЧЕСКИ КОДИРУЕМЫХ ИНСТРУМЕНТОВ

Шувалова М.Л., Носов Г.А., Белоусов В.В.

В книге: Оптогенетика+ 2023. Сборник научных трудов. Тезисы докладов III Всероссийской научной конференции с международным участием и Школы по современным методам неинвазивного контроля нейрональной активности. Под общей редакцией М.Л. Фирсова. Санкт-Петербург, 2023. С. 124.

4.STUDY OF THE EFFECT OF HYDROGEN PEROXIDE ON THE FUNCTIONING OF THE BLOOD-BRAIN BARRIER USING GENETICALLY ENCODED TOOLS Shuvalova M.L., Nosov G.A., Belousov V.V.

В книге: Оптогенетика+ 2023. Сборник научных трудов. Тезисы докладов III Всероссийской научной конференции с международным участием и Школы по современным методам неинвазивного контроля нейрональной активности. Под общей редакцией М.Л. Фирсова. Санкт-Петербург, 2023. С. 125

5. МОДЕЛИРОВАНИЕ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА ДЛЯ КОНТРОЛЯ ПРОНИЦАЕМОСТИ ГЕНОТЕРАПЕВТИЧЕСКИХ АГЕНТОВ

Шувалова М.Л., Носов Г.А., Мощенко А.А., Лебедева О.С., Белоусов В.В.

В книге: Сборник тезисов 26-ой Пущинской школы-конференции молодых ученых с международным участием "БИОЛОГИЯ - НАУКА XXI ВЕКА". Пущино, 2023. С. 125-126.

6. МОДЕЛИРОВАНИЕ РЕДОКС-СИГНАЛИНГА В ГЕМАТОЭНЦЕФАЛИЧЕСКОМ БАРЬЕРЕ IN VITRO

Шувалова М.Л., Носов Г.А., Белоусов В.В.

В книге: XXXV ЗИМНЯЯ МОЛОДЁЖНАЯ НАУЧНАЯ ШКОЛА "ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ ФИЗИКО- XИМИЧЕСКОЙ БИОЛОГИИ И БИОТЕХНОЛОГИИ. Сборник тезисов. Москва, 2023. С. 127. $\,\,$ 0

7. NEW OPTOGENETIC SYSTEMS FOR PH CONTROL OF SYNAPTIC VESICLES

Bagaeva D.F., Nosov G.A., Vlasova A.D., Bukhalovich S.M., Ilyinsky N.S., Gordely V.I.

В книге: Оптогенетика+ 2023. Сборник научных трудов. Тезисы докладов III Всероссийской научной конференции с международным участием и Школы по современным методам неинвазивного контроля нейрональной активности. Под общей редакцией М.Л. Фирсова. Санкт-Петербург, 2023. С. 13.

8. РОЛЬ РЕДОКС-ЗАВИСИМОГО РЕМОДЕЛИРОВАНИЯ ЦИТОСКЕЛЕТА ЭНДОТЕЛИОЦИТОВ В НАРУШЕНИИ ПРОНИЦАЕМОСТИ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА

Шувалова М.Л., Носов Г.А., Белоусов В.В.

В книге: Нейрокампус 2023: эволюция. Нейротехнологии будущего. Тезисы участников конференции. Москва, 2023. С. 148-158. 0

9. ИНДУЦИРОВАННЫЙ СИНАПТОГЕНЕЗ В ГЕТЕРОЛОГИЧЕСКОЙ СИСТЕМЕ С ИСПОЛЬЗОВАНИЕМ СИНАПТИЧЕСКИХ АДГЕЗИВНЫХ БЕЛКОВ

Молодцова А.А., Носов Г.А.

В книге: Нейрокампус 2023: эволюция. Нейротехнологии будущего. Тезисы участников конференции. Москва, 2023. С. 172-174. 0

10. РАЗРАБОТКА ОПТОГЕНЕТИЧЕСКОГО ИНСТРУМЕНТА ДЛЯ КОНТРОЛЯ СИНАПТИЧЕСКИХ ВЕЗИКУЛ

Багаева Д.Ф., Носов Г.А., Власова А.Д., Бухалович С.М., Ильинский Н.С., Горделий В.И.

В книге: Нейрокампус 2023: эволюция. Нейротехнологии будущего. Тезисы участников конференции. Москва, 2023. С. 53-54.

13. Сведения о кафедрах, участвующих в реализации образовательной программы

кафедра биоинформатики и системной биологии: заведующий кафедрой – д-р физ.-мат. наук Макеев Всеволод Юрьевич, заведующий лабораторией. Задачей кафедры является подготовка магистров и кандидатов наук, владеющих современными методами анализа экспериментальных генетических данных, в том числе общегеномных. Такие умения необходимы для выявления мишеней воздействия лекарственных препаратов на клетку и организм человека, для создания новых лекарств, а также для определения индивидуальных генетических особенностей пациента, важных для выбора стратегии лечения. Прогресс современной науки о жизни невозможен развития вычислительной обработки биологических данных. методов информационные и когнитивные технологии входят в перечень критических технологий Российской Федерации, на которых специализируется Институт общей генетики им. Н.И. Вавилова РАН – базовое предприятие кафедры. Биоинформатика важна для развития многих направлений современной биомедицинской науки, поскольку в ее рамках разрабатываются мощные компьютерные методы обработки анализа больших объемов биологических полученных И данных, новыми высокопроизводительными технологиями.

Базовые организации:

Федеральное государственное бюджетное учреждение науки Институт общей генетики им. Н.И. Вавилова Российской академии наук является одним из ведущих центров в России, в котором проводятся исследования в области биоинформатики и вычислительной биологии. В институте создан отдел вычислительной системной биологии под руководством д.ф.-м.н. Макеева Всеволода Юрьевича. Практические приложения биоинформационных методов входят в повседневные исследования в отделах «Геномика и генетика человека» (руководитель – д-р биол. наук, профессор Е.И. Рогаев) и «Генетические основы биотехнологий» (руководитель – д-р биол. наук, профессор В.Н. Даниленко), а также в других подразделениях института. Все это позволит обеспечить высокий уровень научного руководства студенческими работами на базе ИОГен РАН.

Научные направления ИОГен РАН:

- общая, молекулярная и эволюционная генетика и геномика человека, животных, растений и микроорганизмов;
- генетика и эволюция популяций в связи с охраной биосферы и рациональным использованием биологических ресурсов;
- генетическая структура популяций человека, генофонды и геномная география человека в России и мире. Демографическая генетика;
- междисциплинарные исследования ген-культурной коэволюции и ген-средовых взаимодействий;
- генетические принципы селекции животных, растений и микроорганизмов. геномы культурных

растений применительно к генетическим основам селекции, геномике и биотехнологии;

- генетическая паспортизация и ДНК идентификация;
- генетическая безопасность;
- генотоксикология;
- генетические и эпигенетические механизмы репрограммирования клеток млекопитающих, включая человека;
- генетические основы биотехнологии;
- создание математических моделей в биологии;
- биоинформатика;
- сравнительная геномика. системная биология;
- изучение особенностей CRISPR-систем прокариотического иммунитета;
- исследования эволюции генных паралогических семейств человека;
- улучшение автоматической аннотации генов/геномов;
- анализ пан-геномов бактерий;
- анализ регуляции транскрипции у бактерий при помощи альтернативных сигма-факторов;
- исследование горизонтального переноса пластидных генов у растений и водорослей.

кафедра молекулярной и клеточной биологии: заведующий кафедрой – д-р физ.-мат. наук, проф. Заседателев Александр Сергеевич, заведующий лабораторией биологических микрочипов ИМБ РАН. Кафедра молекулярной и клеточной биологии ФБМФ готовит специалистов высшей квалификации с разносторонним опытом изучения биомолекулярных систем для проведения исследований в области фундаментальных наук о жизни и биотехнологии, а также для практических работ по созданию новых медицинских препаратов и оборудования. Студенты и аспиранты, закончившие кафедру, успешно защищают кандидатские диссертации, находят работу в лидирующих центрах мировой науки и решают актуальные проблемы современной молекулярной и клеточной биологии с применением всего арсенала биологических, химических, физических и математических методов. Базовым институтом кафедры является Институт молекулярной биологии им. В.А. Энгельгардта РАН, а также исследовательские коллективы ИБГ РАН, ИБХ РАН, ИМГ РАН и Института вирусологии, которые имеют достаточно средств для проведения экспериментов высокого уровня, для оплаты работы сотрудников, аспирантов и студентов. Кафедра молекулярной и клеточной биологии ФБМФ готовит специалистов высшей квалификации с разносторонним опытом изучения биомолекулярных систем для проведения исследований в области фундаментальных наук о жизни и биотехнологии, а также для практических работ по созданию новых медицинских препаратов и оборудования.

Базовые организации:

Федеральное государственное бюджетное учреждение науки Институт молекулярной биологии Российской академии инициатор В.А.Энгельгардта наук исследований структурно-функциональному анализу хромосом человека растений, тРНК аминоацил-тРНК-синтетазам, кристаллографии белков, молекулярной энзимологии, обратной транскрипции, расшифровке нуклеотидных последовательностей ДНК и РНК, молекулярной иммунологии, структуре нуклеосом, подвижным генетическим элементам животных, молекулярной генетике цитокинов семейства фактора некроза опухолей, созданию уникальных биомедицинских помощью технологий обратной генетики, ДНК-лигандным биологическим микрочипам, геномной дактилоскопии, молекулярным механизмам нейродегенерации и старения, технологиям генетического редактирования. С 1988 по 2002 г. ИМБ РАН в качестве головного института возглавлял геномные исследования в СССР и России в рамках Федеральной программы «Геном человека» (руководители – академики А.А. Баев и Л.Л. Киселев). Научные направления ИМБ РАН:

- молекулярная и клеточная инженерия; биоинженерия;
- онкогеномика, онкодиагностика, онкопрогностика, онковирусология;
- подвижные и повторяющиеся генетические элементы животных, и их эволюция; молекулярная иммунология;
- структура и молекулярная динамика биополимеров;

- создание новых биологически активных соединений;
- генетическая энзимология;
- передача сигнала на молекулярном и клеточном уровнях;
- геномная и протеомная биоинформатика;
- разработка фундаментальных основ новых молекулярных и клеточных технологий, бионанотехнологии;
- геномика растений.

кафедра геномики и биотехнологии растений: заведующий кафедрой - д-р биол. наук Соловьев Александр Александрович, главный научный сотрудник лаборатории клеточной и репродуктивной биологии растений.

Задачей кафедры является подготовка магистров и кандидатов наук, владеющих современными методами в селекции растений, основами биоинформатического анализа генетических данных растений, молекулярной цитогенетики. Основными объектами являются важнейшие сельскохозяйственные культуры — пшеница, соя, кукуруза, подсолнечник, свекла и др. Важным моментом программы является сочетание молекулярных, генетических, селекционных и биоинформатических знаний и навыков.

Базовые организации:

Федеральное государственное бюджетное научное "Всероссийский учреждение научно-исследовательский институт сельскохозяйственной биотехнологии" Основной задачей института является проведение фундаментальных и прикладных исследований, направленных на целью биотехнологий создания новых c исходных перспективных форм сельскохозяйственных растений и животных с улучшенными характеристиками.

В настоящее время во ВНИИСБ ведутся работы по следующим направлениям:

разработка фундаментальных основ генно-инженерных технологий создания трансгенных растений и животных с заданными свойствами;

разработка методов клеточной и генной инженерии для создания новых перспективных форм основных сельскохозяйственных растений;

разработка новых методов маркирования генов и признаков сельскохозяйственных растений с использованием ДНК-технологий;

изучение физиолого-биохимических и молекулярных механизмов действия биосинтетических регуляторов роста растений;

разработка методов создания имуннохимических тест-систем для диагностики патогенов растений и животных:

создание генно-инженерных вакцин нового поколения для защиты животных от инфекции.

Институт ведет подготовку научных кадров, имеет аспирантуру и докторантуру.

Сотрудники Института осуществляют международные связи с зарубежными научно-исследовательскими учреждениями.

кафедра молекулярной и трансляционной медицины: заведующий кафедрой - д-р биол. наук, доц. Лазарев Василий Николаевич, заместитель генерального директора по научной работе ФГБУ ФНКЦ физико-химической медицины им. Ю.М.Лопухина ФМБА России. Преподаватели и студенты кафедры молекулярной и трансляционной медицины принимают активное участие в проектах организованного на базе ФГБУ Федерального научно-клинического центра физико-химической медицины «Центра высокоточного редактирования и генетических технологий для биомедицины» (http://biomedgene.ru/). Миссией Центра является развитие генетических технологий, адаптация этих технологий для получения новых знаний о нормальных и патологических процессах в организме и применение этих знаний для решения проблем здоровья человека. В 2020 году заведующий кафедрой молекулярной и трансляционной медицины академик РАН В.М. Говорун и его заместитель доктор биологических наук В.Н. Лазарев за большой вклад в борьбу с коронавирусной инфекцией (COVID-19) были награждены орденами Пирогова.

Научные направления кафедры молекулярной и трансляционной медицины сфокусированы на

приложении биологических подходов к клиническим задачам в областях:

- персонифицированной медицины;
- молекулярного профилирования;
- регенеративных клеточных технологий;
- медицинских нанотехнологий.

Базовые организации:

Федеральное государственное бюджетное учреждение «Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства». 2020 году на баз Федерального научно-клинического центра физико-химической медицины функционировать уникальный Центр технологий и микрофабрикации, имеющий собственную площадку с комплексом чистых помещений и высокотехнологичного оборудования для задач микро- и нанофабрикации. Области научных интересов: плазмоника и наноплазмоника; биофотоника и биосенсоры; микрофлюидика и нанофлюидика; микрофабрикация и нанофабрикация; разработка анализаторов и диагностических комплексов для in vitro диагностики. Основные направления кафедры: изучение физико-химических основ развития болезней человека; разработка, создание и внедрение в клиническую практику оригинальных методов тераностики (терапии и диагностики), основанных на новых знаниях о физико-химических закономерностях развития заболеваний. В основу этих методов легли «омиксные технологии» (геномика, транскриптомика, протеомика, метаболомика) и математическое моделирование биопроцессов.