Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ливанов Дмитрий Викторович

Должность: Ректор

Дата подписания: 17.07.2025 14:47:09 Уникальный программный ключ:

c6d909c49c1d2034fa3a0156c4eaa51e7232a3a2

Утверждена решением Ученого совета МФТИ от 30 мая 2024 г. (протокол № 01/05/2024)

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Уровень высшего образования БАКАЛАВР

Направление подготовки 03.03.01 ПРИКЛАДНЫЕ МАТЕМАТИКА И ФИЗИКА

> Направленность (профиль) БИОФИЗИКА И БИОИНФОРМАТИКА

Год начала обучения по образовательной программе 2024 г.

Обновление образовательной программы:

решение Ученого совета МФТИ от 24 апреля 2025 г. (протокол № 01/04/2025)

Основная образовательная программа высшего образования по направлению подготовки 03.03.01 Прикладные математика и физика, направленность (профиль) Биофизика и биоинформатика, реализуемая в МФТИ, представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики образовательной программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных и методических материалов. Основная образовательная программа высшего образования создана на основе образовательного стандарта по направлению подготовки 03.03.01 Прикладные математика и физика, самостоятельно разработанного и утвержденного МФТИ.

1. Общая характеристика образовательной программы

Квалификация, присваиваемая выпускникам: бакалавр.

Форма обучения: очная.

Срок получения образования: 4 года.

Объем образовательной программы составляет 240 зачетных единиц и включает все виды аудиторной и самостоятельной работы обучающегося, практики, время, отводимое на контроль качества освоения обучающимся образовательной программы.

Объем контактной работы обучающихся с преподавателями составляет не менее 5 197 часов. **Язык реализации программы:** русский.

Использование сетевой формы реализации образовательной программы: да.

Цель программы:

Программа «Биофизика и биоинформатика» является базовой программой ФБМФ по направлению «Прикладные математика и физика». Программа сочетает в себе базовую программу МФТИ по высшей математике, общей и теоретической физике и программы по химии, биологии и прикладным биофизическим технологиям. Курсы в обучении дают хорошую базу для программирования и разработок в разных сферах, в том числе делается упор на биоинформатику. Образовательная программа реализуется совместно с базовыми организациями: ИМБ РАН, Иоген РАН, ФГБУ ФНКЦ ФХМ ФМБА России, ИБХ РАН, Центр высоких технологий «ХимРар».

2. Характеристика профессиональной деятельности выпускников:

Области профессиональной деятельности и сферы профессиональной деятельности,

в которых выпускники, освоившие программу бакалавриата, могут осуществлять профессиональную деятельность:

40 Сквозные виды профессиональной деятельности В промышленности сфере фундаментальных прикладных научно-исследовательских, инновационных опытно-конструкторских разработок, а также в сфере разработки и внедрения новых технологических процессов производства перспективных материалов (в том числе композитов, метаматериалов), изделий опто-, микро- и наноэлектроники, разработки и применения электронных приборов и комплексов, а также в сфере мониторинга параметров материалов, состояния сложных технических и живых систем и состояния окружающей среды, включая разработку и использование для решения поставленных задач).

Выпускники могут осуществлять профессиональную деятельность в других областях профессиональной деятельности и (или) сферах профессиональной деятельности при условии соответствия уровня их образования и полученных компетенций требованиям квалификации работника.

Типы задач профессиональной деятельности выпускников:

научно-исследовательский.

Задачи профессиональной деятельности выпускников:

проведение научных и аналитических исследований по отдельным разделам (этапам, заданиям) проекта в рамках своей предметной области в соответствии с утвержденными планами и методиками исследований;

участие в проведении наблюдений и измерений, выполнении эксперимента и обработке данных с использованием современных компьютерных технологий;

сбор и обработка научной и аналитической информации с использованием современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий;

участие в проведении теоретических исследований, построении физических, математических и компьютерных моделей изучаемых процессов и явлений, в проведении аналитических исследований в своей предметной области;

участие в обобщении полученных данных, формировании выводов, в подготовке научных и аналитических отчетов, публикаций и презентаций результатов научных и аналитических исследований;

участие в создании новых методов (технических средств, алгоритмов и компьютерных программ) для научно-исследовательских и прикладных целей.

Объекты профессиональной деятельности выпускников, освоивших программу бакалавриата:

модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса;

объекты техники, технологии и производства; природные и социальные явления и процессы.

3. Перечень профессиональных стандартов, соответствующих профессиональной деятельности выпускников:

40.011 Специалист по научно-исследовательским и опытно-конструкторским разработкам.

Код и наименование	Обобщенные трудовые функции		Трудовые функции			
профессионального стандарта	код	наименование	уро вень квалиф икации	наименование	код	уро вень квалиф икации
40.011 Профессиональный стандарт "Специалист по научно-исследователь ским и опытно-конструкторс	A	Проведение научно-исследовател ьских и опытно-конструктор ских разработок по отдельным разделам темы	5	Осуществление проведения работ по обработке и анализу научно-технической информации и результатов исследований	A/01.5	5
ким разработкам"				Осуществление выполнения экспериментов и оформления результатов исследований и разработок	A/02.5	5
				Подготовка элементов документации, проектов планов и программ проведения отдельных этапов работ	A/03.5	5

4. Требования к результатам освоения образовательной программы

В результате освоения основной образовательной программы у выпускника должны быть сформированы универсальные, общепрофессиональные и профессиональные компетенции.

Универсальные компетенции выпускников и индикаторы их достижения:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции		
УК-1 Способен осуществлять	УК-1.1 Анализирует задачу, выделяя этапы ее решения, действия по		
поиск, критический анализ и	решению задачи		
синтез информации, применять	УК-1.2 Находит, критически анализирует и выбирает информацию,		
системный подход для решения			
поставленных задач	УК-1.3 Рассматривает различные варианты решения задачи, оценивает их		
	преимущества и недостатки		
	УК-1.4 Грамотно, логично, аргументированно формирует собственные		
	суждения и оценки		
	УК-1.5 Определяет и оценивает практические последствия возможных		
	вариантов решения задачи		
УК-2 Способен определять круг	УК-2.1 Формулирует совокупность взаимосвязанных задач в рамках		
задач в рамках поставленной	поставленной цели работы, обеспечивающих ее достижение. Определяет		
цели и выбирать оптимальные	ожидаемые результаты решения поставленных задач		
способы их решения, исходя из	УК-2.2 Проектирует решение конкретной задачи проекта, выбирая		
действующих правовых норм,	оптимальный способ ее решения, исходя из действующих правовых норм и		
имеющихся ресурсов и	имеющихся ресурсов и ограничений		
ограничений			

VIII 2 C	VIII. 2.1.0
УК-3 Способен осуществлять	УК-3.1 Способен устанавливать разные виды коммуникации (учебную,
социальное взаимодействие и	научную, деловую, неформальную и др.)
реализовывать свою роль в	УК-3.2 Взаимодействует с другими членами команды для достижения
команде	поставленной задачи
УК-4 Способен осуществлять	УК-4.1 Демонстрирует умение вести обмен деловой информацией в устной и
деловую коммуникацию в устной	письменной формах на государственном языке Российской Федерации и не
и письменной формах на	менее чем на одном иностранном языке
государственном языке	УК-4.2 Использует современные информационно-коммуникативные
Российской Федерации и	средства для коммуникации
иностранном(ых) языке(ах)	
УК-5 Способен осмысливать	УК-5.1 Знает основные категории философии, законы исторического
культурное разнообразие	развития, основы межкультурной коммуникации
общества в	УК-5.2 Имеет представление о системах этических и интеллектуальных
социально-историческом,	ценностей и норм, их значении в истории общества
этическом и философском	
аспектах	
УК-6 Способен управлять своим	УК-6.1 Определяет приоритеты профессиональной деятельности и способы
временем, выстраивать и	ее совершенствования на основе самооценки
реализовывать траекторию	УК-6.2 Способен планировать самостоятельную деятельность в решении
саморазвития на основе	профессиональных задач; подвергать критическому анализу проделанную
принципов образования в	работу; находить и творчески использовать имеющийся опыт в соответствии
течение всей жизни	с задачами саморазвития
	^
УК-7 Способен поддерживать	УК-7.1 Знает основы здорового образа жизни, здоровьесберегающих
должный уровень физической	технологий, физической культуры
подготовленности для	УК-7.2 Понимает влияние оздоровительных систем физического воспитания
обеспечения полноценной	на укрепление здоровья, профилактику профессиональных заболеваний
социальной и профессиональной	УК-7.3 Способен поддерживать уровень физической подготовки; проводить
деятельности	самостоятельные занятия физическими упражнениями с общей
	развивающей, профессионально-прикладной и
	оздоровительно-корректирующей направленностью; составлять
	индивидуальные комплексы физических упражнений с различной
	направленностью
УК-8 Способен создавать и	УК-8.1 Знает классификацию и источники чрезвычайных ситуаций
поддерживать безопасные	природного и техногенного происхождения; причины, признаки и
условия жизнедеятельности, в	последствия опасностей, способы защиты от чрезвычайных ситуаций
том числе при возникновении	УК-8.2 Умеет поддерживать безопасные условия жизнедеятельности;
чрезвычайных ситуаций	выявлять признаки, причины и условия возникновения чрезвычайных
	ситуаций; оценивать вероятность возникновения потенциальной опасности и
	принимать меры по ее предупреждению
	УК-8.3 Владеет методами прогнозирования возникновения опасных или
	чрезвычайных ситуаций; навыками по применению основных методов
	защиты в условиях чрезвычайных ситуаций
УК-9 Способен принимать	УК-9.1 Понимает базовые принципы функционирования экономики и
обоснованные экономические	экономического развития.
решения в различных областях	УК-9.2 Знает основные виды и источники возникновения экономических и
жизнедеятельности	финансовых рисков и подходы к их снижению.
	УК-9.3 Владеет основами экономического анализа для принятия
	обоснованных экономических решений.

УК-10 Способен формировать нетерпимое отношение к проявлениям экстремизма, терроризма, коррупционному поведению и противодействовать им в профессиональной деятельности

УК-10.1 Понимает природу возникновения и опасность экстремизма, терроризма, коррупции, необходимость активного противодействия экстремизму, терроризму и коррупции и важность формирования личностной позиции по отношению к экстремизму, терроризму и коррупционному поведению

УК-10.2 Знает причины, порождающие экстремизм, терроризм и коррупцию, возможные формы их проявления, принципы (правовые, административные, организационные и др.) противодействия экстремизму, терроризму и коррупции, формирования и реализации политики противодействия экстремизму, терроризму и коррупции, а также основы проведения антикоррупционных действий в различных областях жизнедеятельности УК-10.3 Умеет анализировать причины и предпосылки возникновения, характер проявления и последствия коррупционных действий и способен содействовать проведению реализации политики противодействия экстремизму, терроризму, коррупции и формировать личностную позицию по основным вопросам гражданско-этического характера, демонстрируя нетерпимое отношение к экстремизму, терроризму и коррупционному повелению

Общепрофессиональные компетенции выпускников и индикаторы их достижения:

	омпетенции выпускников и индикаторы их достижения:		
Код и наименование компетенции	^		
ОПК-1 Способен применять	ОПК-1.1 Способен анализировать поставленную задачу, намечать пути ее		
фундаментальные знания,	решения		
полученные в области	ОПК-1.2 Способен строить математические модели, производить		
физико-математических и (или)	количественные расчеты и оценки		
естественных наук, и	ОПК-1.3 Способен определять границы применимости полученных		
использовать их в	результатов		
профессиональной деятельности			
ОПК-2 Способен использовать	ОПК-2.1 Способен применять современные вычислительную технику и		
современные информационные	сервисы сети Интернет в области (сфере) профессиональной деятельности		
технологии и программные	ОПК-2.2 Знает и умеет применять численные математические методы и		
средства при решении задач	прикладное программное обеспечение для решения научных задач в		
профессиональной деятельности,	профессиональной области		
соблюдая требования	ОПК-2.3 Знает основные требования информационной безопасности		
информационной безопасности			
ОПК-3 Способен составлять и	ОПК-3.1 Знает основные правила оформления научных публикаций и		
оформлять научные и (или)	научно-технической документации, в том числе с использованием		
технические (технологические,	прикладного программного обеспечения		
инновационные) отчеты	ОПК-3.2 Владеет на практике методологией составления		
(публикации, проекты)	научно-технических отчетов (проектов)		
	ОПК-3.3 Владеет методами визуального и графического представления		
	результатов научной (научно-технической, инновационной технологической)		
	деятельности в виде отчетов, научных публикаций		
ОПК-4 Способен осуществлять	ОПК-4.1 Владеет методами научного поиска и интеллектуального анализа		
сбор и обработку	информации при решении задач профессиональной деятельности		
научно-технической и (или)	ОПК-4.2 Знает основные источники научно-технической и (или)		
технологической информации	технологической информации в области профессиональной деятельности		
для решения фундаментальных и	ОПК-4.3 Умеет составлять аннотации, рефераты, библиографические		
прикладных задач	перечни и обзоры информации в области своей профессиональной		
	деятельности		
	ОПК-4.4 Владеет навыками работы с компьютером и компьютерными		
	сетями с целью получения, хранения и обработки научной (технической,		
	технологической) информации		

ОПК-5 Способен участвовать в проведении фундаментальных и прикладных исследований и разработок, самостоятельно осваивать новые теоретические, в том числе, математические методы исследований, и работать на современной экспериментальной научно-исследовательской, измерительно-аналитической и технологической аппаратуре

ОПК-5.1 Способен решать поставленные задачи в области теоретических и экспериментальных исследований и разработок ОПК-5.2 Обладает способностью к освоению новых знаний на основе изучения литературы, научных статей и других источников ОПК-5.3 Способен к профессиональной эксплуатации современной экспериментальной научно-исследовательской (измерительно-аналитической и технологической) аппаратуры

Профессиональные ко	мпетенции выпускников и индикаторы их дости	жения:
Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Основание (ПС, анализ иных требований, предъявляемых к выпускникам)
тип задач 1	профессиональной деятельности: научно-исследов	ательский
ПК-1 Способен планировать	ПК-1.1 Владеет фундаментальными понятиями,	Специалист по
и проводить научные	законами и теориями современной физики	научно-исследовательским
эксперименты (в избранной	ПК-1.2 Имеет глубокое знание и понимание базовых	и опытно-конструкторским
предметной области) и (или)	математических дисциплин	разработкам
теоретические	ПК-1.3 Владеет культурой постановки научной	
(аналитические и	задачи и моделирования естественнонаучных	
имитационные)	объектов и систем	
исследования	ПК-1.4 Умеет строить математические модели для	
	описания и исследования процессов и явлений в	
	соответствующих научных областях	
	ПК-1.5 Владеет навыками безопасной работы с	
	современными научными приборами и другим	
	экспериментальным оборудованием	
	ПК-1.6 Знает основные правила поведения и работы	
	в современной научной лаборатории	
	ПК-1.7 Способен оценивать требуемые ресурсы	
	(материальные и временные) для планирования и	
	проведения научного эксперимента	
	ПК-1.8 Владеет навыками работы с современными	
	языками программирования и программными	
	пакетами для научных расчетов	
	ПК-1.9 Знает перечень ведущих периодических	
	научных изданий и способен выделять актуальные	
	научные публикации в профессиональной области	
ПК-2 Способен	ПК-2.1 Владеет методами статистической	Специалист по
анализировать полученные в	обработки и анализа научных данных	научно-исследовательским
ходе	ПК-2.2 Умеет находить ключевые параметры,	и опытно-конструкторским
научно-исследовательской	определяющие изучаемое явление, и производить	разработкам
работы данные и делать	численные оценки по порядку величины	
научные выводы	ПК-2.3 Способен представлять научные	
(заключения)	утверждения, их обоснования и доказательства,	
	научные проблемы и их решения ясно и точно в	
	терминах, понятных для профессиональной	
	аудитории, в письменной и устной форме	

ПК-3 Способен выбирать и	ПК-3.1 Знает принципы работы и диапазоны	Специалист по
применять подходящее	рабочих параметров используемого научного	научно-исследовательским
оборудование, инструменты	оборудования	и опытно-конструкторским
и методы исследований для	ПК-3.2 Знает области и критерии применимости	разработкам
решения задач в избранной	используемых теоретических подходов и умение	
предметной области	оценивать точность приближенных аналитических	
	методов вычислений	
	ПК-3.3 Умеет производить оценку точности	
	численных методов, используемых на ЭВМ,	
	вычислительной сложности используемых	
	алгоритмов и объема требуемых вычислительных	
	ресурсов	
ПК-4 Способен критически	ПК-4.1 Знает численные порядки величин,	Специалист по
оценивать применимость	характерных для соответствующей	научно-исследовательским
используемых методик и	профессиональной области	и опытно-конструкторским
методов	ПК-4.2 Знает источники происхождения и умеет	разработкам
	производить оценку погрешности измерений и	
	достоверности экспериментальных результатов	
	ПК-4.3 Способен обосновать	
	причинно-следственные отношения используемых	
	понятий и моделей	

5. Учебный план

Учебный план (Приложение 1) определяет перечень, трудоемкость, последовательность и распределение по периодам обучения учебных дисциплин (модулей), практик, иных видов учебной деятельности, формы промежуточной и итоговой аттестации обучающихся. Трудоемкость образовательной программы устанавливается в зачетных единицах.

Объем обязательной части, без учета объема государственной итоговой аттестации, составляет 49,17 процентов общего объема программы.

Матрица соответствия компетенций дисциплинам учебного плана приведена в Приложении 2.

6. Календарный учебный график

Календарный учебный график (Приложение 3) отражает распределение видов учебной деятельности, периодов аттестации обучающихся и каникул по годам обучения (курсам) и в рамках каждого учебного года. Календарный учебный график образовательной программы высшего образования включает 196 3/6 недели, из которых 117 4/6 недели теоретического и практического обучения, 41 1/6 недели зачетно-экзаменационного периода, 1 4/6 недели государственной итоговой аттестации и 36 недели каникул.

7. Рабочие программы дисциплин (модулей)

Рабочие программы дисциплин (модулей), включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 4.

8. Программы практик

Образовательной программой предусмотрены следующие практики:

научно-исследовательская практика: учебная практика;

лабораторная безопасность и биологический практикум: учебная практика;

проектная сессия: учебная практика;

научно-исследовательская работа: производственная практика.

Рабочие программы практик, включая оценочные материалы для текущего контроля успеваемости и промежуточной аттестации, представлены в Приложении 5.

9. Программа государственной итоговой аттестации

В составе государственной итоговой аттестации обучающихся предусмотрены:

подготовка к сдаче и сдача государственного экзамена по физике;

подготовка к сдаче и сдача государственного экзамена по математике;

выполнение и защита выпускной квалификационной работы.

Программа государственной итоговой аттестации (Приложение 6) включает программу государственного экзамена и требования к выпускным квалификационным работам (объему, структуре, оформлению, представлению), порядку их выполнения, процедуру защиты выпускной квалификационной работы, критерии оценки результатов.

10. Материально-техническое и учебно-методическое обеспечение образовательной программы

Рабочие программы дисциплин (модулей), практик определяют материально-техническое и учебно-методическое обеспечение образовательной программы, включая перечень лицензионного и свободно распространяемого программного обеспечения, перечень электронных учебных изданий и (или) печатных изданий, электронных образовательных ресурсов, перечень и состав современных профессиональных баз данных и информационных справочных систем.

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей) и практик.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду МФТИ.

Электронная информационно-образовательная среда МФТИ обеспечивает доступ:

– к ЭБС:

ЭБС «Университетская библиотека онлайн»;

"Book on Lime" издательства «Книжный дом университета»;

ЭБС издательства «Лань»;

ЭБС издательства «Юрайт»;

ЭБС издательства «IBooks.ru»;

ЭБС Books.mipt.ru;

ЭБС ZNANIUM.COM;

доступ к фондам Национальной электронной библиотеки.

– к научным зарубежным и российским журналам и электронным базам данных:

база данных «Успехи физических наук» Автономная некоммерческая организация Редакция журнала «Успехи физических наук»;

журналы Российской академии наук;

журналы Математического института им. В. А. Стеклова Российской академии наук: Математические журналы (mathnet.ru): Известия Российской академии наук. Серия математическая, Математический сборник, Успехи математических наук;

электронная версия журнала «Квантовая электроника» Физический институт им. П.Н. Лебедева Российской академии наук;

российские журналы на платформе East View компании ИВИС;

полнотекстовый журнал Science Online (American Association for the Advancement of Science);

база данных Journals (Bentham Science Publishers);

база данных EBSCO eBooks (EBSCO Information Services GmbH);

база данных Wiley Journal Database;

архивная коллекция журналов Wiley Journal Backfiles (2005-2013 гг.);

архивная коллекция журналов Wiley Journal Backfiles (2014 -2022 гг.);

журналы РАН;

база данных World Scientific Complete eJournal Collection (World Scientific Publishing Co Pte Ltd.; База данных Academic Reference (China Academic Journals (CD Edition) Electronic Publishing House Co., Ltd);

база данных The Cochrane Library (John Wiley & Sons, Inc.);

база данных CSD-Enterprise (The Cambridge Crystallographic Data Centre).

При изучении дисциплин базовых кафедр, а также при прохождении всех видов практик используется материально-техническое обеспечение и литература базовых организаций, в структуре которых функционируют базовые кафедры, привлекаемые к учебному процессу в рамках настоящей образовательной программы.

11. Особенности реализации образовательной программы для инвалидов и лиц с ограниченными возможностями здоровья

При наличии в контингенте обучающихся по образовательной программе инвалидов и лиц с ограниченными возможностями здоровья образовательная программа адаптируется с учетом особых образовательных потребностей таких обучающихся. При обучении по индивидуальному учебному плану лиц с ограниченными возможностями здоровья срок освоения образовательной программы может быть увеличен по их желанию не более чем на один год по сравнению со сроком получения образования для соответствующей формы обучения.

12. Кадровые условия реализации образовательной программы

Педагогические работники, обеспечивающие обучение профильным дисциплинам образовательной программы, являются высококвалифицированными специалистами в сфере биофизики, молекулярной биологии и биотехнологии, осуществляющими свою профессиональную деятельность в ИОГен РАН, ФНКЦ ФМБА, ИМБ РАН, ИИХР, ИБХ РАН, ГБУЗ «НИИ СП им. Н.В. Склифосовского ДЗМ».

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих образование, соответствующее профилю преподаваемой дисциплины (модуля), в общем числе научно-педагогических работников, реализующих программу бакалавриата, составляет более 70 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих ученую степень (в том числе ученую степень, присвоенную за рубежом и признаваемую в Российской Федерации) и (или) ученое звание (в том числе ученое звание, полученное за рубежом и признаваемое в Российской Федерации), в общем числе научно-педагогических работников, реализующих программу бакалавриата, составляет более 60 процентов.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок) из числа руководителей и работников, деятельность которых связана с направленностью (профилем) реализуемой программы бакалавриата (имеющих стаж работы в данной профессиональной области более 3 лет) в общем числе работников, реализующих программу бакалавриата, составляет более 5 процентов.

13. Сведения о кафедрах, участвующих в реализации образовательной программы

кафедра биоинформатики и системной биологии: заведующий кафедрой - д-р физ.-мат. наук Макеев Всеволод Юрьевич, заведующий лабораторией ИОГен. Задачей кафедры является подготовка бакалавров, магистров и кандидатов наук, владеющих современными методами анализа экспериментальных генетических данных, в том числе общегеномных. Такие умения необходимы для выявления мишеней воздействия лекарственных препаратов на клетку и организм человека, для создания новых лекарств, а также для определения индивидуальных генетических особенностей пациента, важных для выбора стратегии лечения. Прогресс современной науки о жизни невозможен без развития методов вычислительной обработки биологических данных. Нано-, био-,

информационные и когнитивные технологии входят в перечень критических технологий Российской Федерации, на которых специализируется Институт общей генетики им. Н.И. Вавилова РАН – базовое предприятие кафедры. Биоинформатика важна для развития многих направлений современной биомедицинской науки, поскольку в ее рамках разрабатываются мощные компьютерные методы обработки и анализа больших объемов биологических данных, полученных новыми высокопроизводительными технологиями.

Базовые организации:

Федеральное государственное бюджетное учреждение науки Институт общей генетики им. Н.И. Вавилова Российской академии наук является одним из ведущих центров в России, в котором проводятся исследования в области биоинформатики и вычислительной биологии. В институте создан отдел Вычислительной системной биологии под руководством д.ф.-м.н. Макеева Всеволода Юрьевича. Практические приложения биоинформационных методов входят в повседневные исследования в отделах «Геномика и генетика человека» (руководитель – д-р биол. наук, профессор Е.И. Рогаев) и «Генетические основы биотехнологий» (руководитель – д-р биол. наук, профессор В.Н. Даниленко), а также в других подразделениях института. Все это позволит обеспечить высокий уровень научного руководства студенческими работами на базе ИОГен РАН. Научные направления ИОГен РАН:

- общая, молекулярная и эволюционная генетика и геномика человека, животных, растений и микроорганизмов;
- генетика и эволюция популяций в связи с охраной биосферы и рациональным использованием биологических ресурсов;
- генетическая структура популяций человека, генофонды и геномная география человека в России и мире; демографическая генетика;
- междисциплинарные исследования ген-культурной коэволюции и ген-средовых взаимодействий;
- генетические принципы селекции животных, растений и микроорганизмов. геномы культурных растений применительно к генетическим основам селекции, геномике и биотехнологии;
- генетическая паспортизация и ДНК идентификация;
- генетическая безопасность; генотоксикология;
- генетические и эпигенетические механизмы репрограммирования клеток млекопитающих, включая человека;
- генетические основы биотехнологии;
- создание математических моделей в биологии; биоинформатика;
- сравнительная геномика. системная биология;
- изучение особенностей CRISPR-систем прокариотического иммунитета;
- исследования эволюции генных паралогических семейств человека;
- улучшение автоматической аннотации генов/геномов;
- анализ пан-геномов бактерий;
- анализ регуляции транскрипции у бактерий при помощи альтернативных сигма-факторов;
- исследование горизонтального переноса пластидных генов у растений и водорослей.

кафедра молекулярной и клеточной биологии: заведующий кафедрой - д-р физ.-мат. наук, проф. Заседателев Александр Сергеевич, заведующий лабораторией биологических микрочипов ИБМ РАН. Кафедра молекулярной и клеточной биологии ФБМФ готовит специалистов высшей квалификации с разносторонним опытом изучения биомолекулярных систем для проведения исследований в области фундаментальных наук о жизни и биотехнологии, а также для практических работ по созданию новых медицинских препаратов и оборудования. Студенты и аспиранты, закончившие кафедру, успешно защищают кандидатские диссертации, находят работу в лидирующих центрах мировой науки и решают актуальные проблемы современной молекулярной и клеточной биологии с применением всего арсенала биологических, химических, физических и математических методов. Базовым институтом кафедры является Институт молекулярной биологии им. В.А. Энгельгардта РАН, а также исследовательские коллективы ИБГ РАН, ИБХ РАН, ИМГ РАН и Института вирусологии, которые имеют достаточно средств для проведения экспериментов высокого уровня, для оплаты работы

сотрудников, аспирантов и студентов. Кафедра молекулярной и клеточной биологии ФБМФ готовит специалистов высшей квалификации с разносторонним опытом изучения биомолекулярных систем для проведения исследований в области фундаментальных наук о жизни и биотехнологии, а также для практических работ по созданию новых медицинских препаратов и оборудования.

Базовые организации:

Федеральное государственное бюджетное учреждение науки Институт молекулярной биологии В.А.Энгельгардта Российской инициатор академии наук исследований им. структурно-функциональному анализу хромосом человека растений, И И аминоацил-тРНК-синтетазам, кристаллографии белков, молекулярной энзимологии, обратной транскрипции, расшифровке нуклеотидных последовательностей ДНК и РНК, молекулярной иммунологии, структуре нуклеосом, подвижным генетическим элементам животных, молекулярной генетике цитокинов семейства фактора некроза опухолей, созданию уникальных биомедицинских с помощью технологий обратной генетики, ДНК-лигандным взаимодействиям, биологическим микрочипам, геномной дактилоскопии, молекулярным механизмам нейродегенерации и старения, технологиям генетического редактирования. С 1988 по 2002 г. ИМБ РАН в качестве головного института возглавлял геномные исследования в СССР и России в рамках Федеральной программы «Геном человека» (руководители - академики А.А. Баев и Л.Л. Киселев).

Научные направления ИМБ РАН:

- молекулярная и клеточная инженерия; биоинженерия;
- онкогеномика, онкодиагностика, онкопрогностика, онковирусология;
- подвижные и повторяющиеся генетические элементы животных, и их эволюция; молекулярная иммунология;
- структура и молекулярная динамика биополимеров;
- создание новых биологически активных соединений;
- генетическая энзимология;
- передача сигнала на молекулярном и клеточном уровнях;
- геномная и протеомная биоинформатика;
- разработка фундаментальных основ новых молекулярных и клеточных технологий, бионанотехнологии;
- геномика растений.

кафедра молекулярной и трансляционной медицины: заведующий кафедрой - д-р биол. наук, проф., акад. РАН Говорун Вадим Маркович, директор Научно-исследовательского института системной биологии и медицины. Преподаватели и студенты кафедры молекулярной и трансляционной медицины принимают активное участие в проектах организованного на базе ФГБУ Федерального научно-клинического центра физико-химической медицины «Центра высокоточного редактирования и генетических технологий для биомедицины» (http://biomedgene.ru/). Миссией Центра является развитие генетических технологий, адаптация этих технологий для получения новых знаний о нормальных и патологических процессах в организме и применение этих знаний для решения проблем здоровья человека.

В 2020 году заведующий кафедрой молекулярной и трансляционной медицины академик РАН В.М. Говорун и его заместитель доктор биологических наук В.Н. Лазарев за большой вклад в борьбу с коронавирусной инфекцией (COVID-19) были награждены орденами Пирогова.

Базовые организации:

Федеральное государственное бюджетное учреждение «Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства» В 2020 году на базе ФГБУ Федерального научно-клинического центра физико-химической медицины начал функционировать уникальный Центр технологий и микрофабрикации, имеющий собственную площадку с комплексом чистых помещений и высокотехнологичного оборудования для задач микро- и нанофабрикации. Области научных интересов: плазмоника и наноплазмоника; биофотоника и биосенсоры; микрофлюидика и нанофлюидика; микрофабрикация и нанофабрикация; разработка

анализаторов и диагностических комплексов для in vitro диагностики.

кафедра физики живых систем: заведующий кафедрой - д-р мед. наук, проф., акад. РАН Хубутия Могели Шалвович, директор НИИ скорой помощи им. Н.В. Склифосовского. Студенты и аспиранты кафедры физики живых систем обучаются и занимаются теоретическими и экспериментальными исследованиями живых систем на клеточном, органном и системном уровне в ведущих научных, медико-биологических и клинических центрах Российской академии наук и Министерства здравоохранения РФ.

Основными направлениями исследований кафедры физики живых систем являются биологическая и медицинская физика и механика органов и тканей, биомедицинская информатика и инженерия, разработка и испытания медицинских изделий, искусственные органы и органозамещающие технологии, биофизика мембран, клеточная и тканевая инженерия. ГУЗМ НИИ скорой помощи им. Н.В. Склифосовского — базовое предприятие кафедры. Основными направлениями исследований кафедры физики живых систем являются биологическая и медицинская физика и механика органов и тканей, биомедицинская информатика и инженерия, разработка и испытания медицинских изделий, искусственные органы и органозамещающие технологии, биофизика мембран, клеточная и тканевая инженерия. Студенты и аспиранты кафедры физики живых систем обучаются и занимаются теоретическими и экспериментальными исследованиями живых систем на клеточном, органном и системном уровне в ведущих научных, медико-биологических и клинических центрах Российской академии наук и Министерства здравоохранения РФ.

Базовые организации:

Государственное бюджетное учреждение здравоохранения города Москвы «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения города Москвы» является крупным многопрофильным научно-практическим центром, занимающимся проблемами скорой медицинской помощи, неотложной хирургии, реанимации, сочетанной и ожоговой травмы, неотложной кардиологии и острых отравлений. Всего в институте в настоящее время сформировано более 40 научных подразделений, из них более половины клинические, которые соответствуют профилю наиболее распространенных неотложных заболеваний. Большой научный и практический потенциал кадрового состава, современное оснащение позволяют успешно разрабатывать новые и совершенствовать существующие методы диагностики и лечения неотложных состояний, что позволяет лечить больных с наиболее тяжелыми и осложненными острыми хирургическими заболеваниями и травмами, консультировать и переводить пациентов из других лечебных учреждений в институт для лечения.

Научные направления ГУЗМ НИИ:

- искусственные органы;
- биомедицинская информатика;
- биофизика мембранных процессов;
- трансплантационный иммунитет и клеточные технологии;
- биоматериалы в медицине;
- физические процессы в органах и тканях;
- физика визуализации изображений в медицине.

кафедра физико-химической биологии и биотехнологии: заведующий кафедрой - д-р хим. наук, проф. Арсеньев Александр Сергеевич, зав. отделом структурной биологии Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова. Задачей кафедры является подготовка высококвалифицированных специалистов по новейшим направлениям современной биологии, таким как структура и функции биополимеров, генная и белковая инженерия, молекулярные основы иммунологии и онкологии, структура и функции биологических мембран, биои нанотехнология, а также прикладная информатика. Нано-, биотехнологии входят в перечень критических технологий Российской Федерации, на которых специализируется Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук – базовое предприятие кафедры. Физико-химическая биология – невероятно интересная область

знаний на стыке многих наук, освоить которую достаточно трудно. В мире нет институтов, в которых одновременно готовились бы физики, математики, химики и биологи. Для этого нужна фундаментальная подготовка во всех этих областях, а также по вычислительной математике и технике проведения эксперимента. Такие специалисты, исследуя живой объект, должны увидеть проявления физических и химических законов, понять механизм их действия и на этой основе предсказать поведение живой системы.

Базовые организации:

Государственный Научный Центр Федеральное государственное бюджетное учреждение науки Институт биоорганической химиии им. академиков М.М.Шемякина и Ю.А.Овчинникова Российской академии наук является одной их крупнейших научных организаций, подведомственных Министерству науки и высшего образования РФ. Институт является лидером в проведении фундаментальных и ориентированных на инновации научных работ в областях молекулярной, структурной и клеточной биологии, биоорганической химии, биофизики, биоинженерии, клеточных технологий (включая репрограммирование Т-клеток, конструирование векторов для направленной доставки лекарственных соединений), молекулярных основ прижизненного биоимиджинга, редактирование генома, биоинформатики и др. Такая многодисциплинарная структура позволяет выполнять широкомасштабные исследования на стыке наук, где сегодня и рождаются наиболее интересные научные открытия. Научно-исследовательская программа института соответствует приоритетному направлению развития науки «Науки о жизни» и критическим технологиям РФ: «Биокаталитические, биосинтетические и биосенсорные технологии», «Биомедицинские и ветеринарные технологии», «Геномные, протеомные и постгеномные технологии» и «Клеточные технологии». Кроме того, ИБХ РАН имеет возможность реализовать путь внедрения потенциального лекарственного соединения, начиная от дизайна молекулы до проведения сертифицированных доклинических испытаний, И наработку препарата клинических испытаний ДЛЯ сертифицированном биотехнологическом производстве института.

Научные направления ИБХ РАН:

- мембранные белки I типа (рак, остеомиопатия, нейродегенеративные заболевания);
- потенциал-зависимые ионные каналы (эпилепсия, мышечная слабость, глухота, аритмия, хроническая боль);
- белок-предшественник β-амилоидов (болезнь Альцгеймера);
- антимикробные пептиды (потенциальные лекарства);
- разработка новых методов ЯМР-спектроскопии;
- освещение таких фундаментальных проблем данной области, как структура и функции биополимеров, генная и белковая инженерия, биотехнология, молекулярные основы иммунологии, структура и функции биологических мембран, а также прикладная информатика. Большое внимание уделяется освоению студентами передовых методов исследования строения молекул и механизмов их биологического действия;
- разработка систем массивного функционального анализа промоторной активности фрагментов ДНК;
- разработка системы отбора промоторов с заданной клеточной специфичностью.
- раково-специфические промоторы;
- получение и анализ библиотек промоторов, активных в культивируемых линиях клеток опухолевого происхождения;
- получение и анализ библиотек энхансер-промоторных пар активных в культивируемых линиях клеток опухолевого происхождения;
- разработка фундаментальных и прикладных аспектов биотехнологии и внедрение результатов в производство биофармацевтических препаратов.

кафедра инновационной фармацевтики, медицинской техники и биотехнологии: заведующий кафедрой - д-р техн. наук Иващенко Андрей Александрович, председатель совета директоров группы компании «ХимРар». Задача кафедры — обеспечить студентов знаниями и навыками для успешной карьеры в области живых систем. Для достижения этой цели студенты кафедры совмещают работу в

лабораториях с предпринимательской деятельностью. Научные исследования проводятся в лабораториях Центра живых систем и биофарминжиниринга МФТИ, а предпринимательские проекты развиваются в стартап-студиях — бизнес-инкубаторами внутри кафедры, Центр высоких технологий «ХимРар» — базовое предприятие кафедры. Кафедра проводит для студентов и аспирантов ФБМФ курсы, посвященные основам медицинской химии, разработке лекарственных средств, гетероциклическим соединениям, медицинской химии, основам компьютерного моделирования лекарственных средств, синтезу лекарственных молекул, бизнес-деятельности и технологическому предпринимательству в сфере живых систем.

Базовые организации:

Центр Высоких Технологий «ХимРар» научные исследования проводятся в лабораториях Центра живых систем и биофарминжиниринга МФТИ, а предпринимательские проекты развиваются в стартап-студиях — бизнес-инкубаторами внутри кафедры, позволяющих обучающимся обзавестись экспертной и менторской поддержками.

Научные направления ЦВТ «ХимРар»:

- технологическое предпринимательство;
- инженерное дело и бирюзовое управление;
- современные технологии в разработке, производстве и выводе на рынок лекарств;
- процессы старения;
- анализ биомедицинских данных;
- медицинская физика;
- искусственный интеллект в медицине.