Фелеральное государственное автономное образовательное

Документ подписан простой электронной подписутреждение высшего образования Информация о владельце:

«Московский физико-технический институт ФИО: Ливанов Дмитрий Викторовии (национальный исследовательский университет)»

Должность: Ректор

Дата подписания: 22.10.2025 17:21:49 Уникальный программный ключ:

c6d909c49c1d2034fa3a0156c4eaa51e7232a3a2

УТВЕРЖДЕНО

Директор физтех-школы прикладной математики и информатики

А.М. Райгородский

Программа государственной итоговой аттестации Выполнение и защита выпускной квалификационной работы

Бизнес-информатика по направлению:

профиль подготовки: Цифровая трансформация бизнеса

Физтех-школа Прикладной Математики и Информатики

курс: 2

квалификация: магистр

4 (Весенний) семестр:

Программу составил: Н.Ю. Старичков, заместитель заведующего кафедрой

Программа обсуждена на заседании Физтех-школы Прикладной Математики и Информатики 04.06.2020

1. Цели и задачи

Цели

Целью выполнения и защиты выпускной квалификационной работы является установление уровня подготовки обучающегося к выполнению профессиональных задач и соответствия результатов освоения обучающимся образовательной программы, требованиям образовательного стандарта по направлениям подготовки.

Задачи

- оценка способности обучающегося, опираясь на полученные знания, умения, сформированные компетенции, самостоятельно решать на современном уровне задачи из области своей профессиональной деятельности, профессионально излагать специальную информацию, правильно аргументировать и защищать свою точку зрения;
- принятие решения о присвоении выпускнику квалификации «Магистр» по результатам ГИА и выдаче выпускнику документа (диплома) о высшем образовании;
- разработка рекомендаций по совершенствованию подготовки выпускников по данному направлению подготовки на основании результатов работы государственной экзаменационной комиссии.

2. Перечень компетенций, уровень сформированности которых оценивается при проведении защиты выпускной квалификационной работы

Код и наименование компетенции	Индикаторы достижения компетенции
ОПК-1 Способен разрабатывать стратегию развития информационных технологий, инфраструктуры предприятия и управлять её реализацией	ОПК-1.1 Применяет на практике методики оценки качества ресурсов информационных технологий, управления активами и конфигурации информационных технологий, методики определения потребностей в уровне качества ресурсов ИТ ОПК-1.2 Оценивает и контролирует качество процессов управления инфраструктурой информационных технологий
ОПК-2 Способен учитывать конкретные условия выполняемых задач и разрабатывать инновационные решения при управлении проектами и процессами в сфере ИКТ	ОПК-2.1 Выполняет оценку условий развития проекта в области ИКТ ОПК-2.2 Владеет теоретической базой управления инновационными проектами и процессами в сфере ИКТ ОПК-2.3 Умеет применять теоретический инструментарий на практике в ходе разработки инновационных ІТ-решений
ОПК-5 Способен проводить исследования, организовывать самостоятельную и коллективную научно-исследовательскую, проектную и учебно-профессиональную деятельность для поиска, выработки и применения новых решений в области информационно-коммуникационных технологий	ОПК-5.1 Владеет логическими методами и приемами научного исследования; методологическими принципами современной науки, направлениями, концепциями, источниками знания и приемами работы с ними; программно-целевыми методами решения научных проблем; основами моделирования управленческих решений; математическими моделями оптимального управления для непрерывных и дискретных процессов, методами их сравнительного анализа; многокритериальными методами принятия решений ОПК-5.2 Умеет описывать бизнес-модели и процессы новых направлений деятельности организации или проект развития организации

3. Тематика выпускных квалификационных работ

Классификация текстовых запросов в диалоговых системах.

Индексирование многомерных данных при помощи кривой Мортона в NoSQL in-memory СУБД.

Сообщества и роли в классификации вершин графа.

Анализ третичных взаимодействий в структурах РНК.

Применение методов машинного обучения в задаче быстрого сопоставления большого количества изображений.

Реализация контролируемого выполнения программ с помощью трассировки.

Генерация текста в соответствии с заданной темой и тональностью.

Теория и практика табличного представления онтологий.

Система автоматизированной оценки и анализа стоимости прав на товарные знаки.

Реализация алгоритма NEAT для импульсных нейронных сетей.

Разработка инструмента для построения ETL-процессов на базе Hadoop.

Корреляция стоимости бренда и спортивных результатов команд.

Инструмент для поиска неисправностей по данным временных рядов метрик приложения.

Применение ОТ (операционных трансформаций) в задачах модификации структурированных данных, в частности, онтологий.

Проектирование пользовательского интерфейса системы создания, редактирования использования онтологий.

Теория и практика представления онтологий в виде графов.

Использование генеративно-состязательных моделей для изменения текста по заданным настройкам.

Проблема масштабирования многопользовательской системы для работы с онтологиями.

Применение архитектуры BERT для программной реализации задачи "вопрос-ответ".

Исследование состояния экономики на основании исследования защиты объектов интеллектуальной собственности в РФ.

Применение машинного обучения для предсказания временных рядов при поиске неисправностей приложения.

Связность и гамильтоновость случайного подграфа графа Джонсона.

Квазиарифметические симплициальные призмы Кокстера.

Конструкции экстракторов с несколькими слабыми источниками случайности.

Предельные характеристики случайных графов.

Асимптотические характеристики случайных графов в различных моделях.

Теоремы типа Алона-Боппана.

Связность и гамильтоновость случайного подграфа графа Джонсона.

Теоремы турановского типа для дистанционных графов.

Точная локализация шаблонов синхронизации в задаче чтения штриховых кодов без использования методов бинаризации.

Выбор репрезентативных локальных дескрипторов в задачах распознавания типа объекта.

Проблема распознавания речи.

Разработка генератора коротких текстов на основе ИИ для решения медийных задач.

Обнаружение препятствий в видеопотоке полученным с помощью движущейся камеры.

Методы адаптации к домену на векторных представлениях графа.

Генерация атрибутов лица с помощью генеративно-состязательных моделей.

Низкоразмерное представление разнородных сигналов в задачах поиска и рекомендаций.

Рекомендации на графах для Nirvana.

Навигация робота среди пешеходов на основе алгоритмов обучения с подкреплением.

Стохастические нейро-дифференциальные уравнения.

Сегментация пользовательских медицинских снимков зубов.

Генеративная лапласовская модель для увеличения разрешения трехмерных облаков точек.

Исследование и разработка методов для сбора данных для задачи разнообразия поисковой выдачи.

Диалоговые агенты с долговременной памятью для разговора на свободную тему.

Обучение с подкреплением в задаче разговора на свободную тему.

Персональные и контентные рекомендации.

Продвинутые техники семплирования в стохастическом градиентном бустинге.

Обучение с частичным привлечением учителя в задаче голосовой верификации.

Адаптивная фильтрация обучающих данных для нейросетевого машинного перевода.

Методы машинного обучения в задаче виртуальной примерочной с использованием видео данных.

Предобучение языковых моделей для поиска сущностей в базе знаний.

Распознавание речи с контекстной информацией для морфологически богатых языков.

Построение и оценка качества гетерогенных тематических моделей.

Использование нейросетевых методов для задачи предсказания поведения участников дорожного движения.

Методы машинного обучения в задаче рекомендации документов и запросов пользователю на основе поискового запроса.

Алгоритмы консенсуса на энергонезависимой памяти.

Выращивание языковых моделей.

Детектирование фейковых поездок по гео-треку.

Перенос стиля текста при отсутствии параллельных корпусов.

Разработка модели безопасного оборота данных в крупной финансовой организации

Кэш-пулинг на блокчейне Stellar.

Анализ повышения эффективности использования памяти Java приложением от внедрения inline types.

Анализ и реализации ConcurrentHashMap на основе non-volatile памяти.

Разработка методов использования поведенческих признаков для определения неавторизованного пользователя мобильного устройства.

Разработка методики и системы выявления ошибочно предоставленных доступов к информационным ресурсам в крупной финансовой организации.

Реализация механизма окрашивания денежных средств для контроля целевого использования в процессе кредитования малого и микро-бизнеса.

Примитивы синхронизации в Java на основе non-volatile памяти.

Обучение функций потерь.

Преобразование вопроса на естественном языке в запрос к графовым базам данных.

Проектирование архитектуры server-driven движка рендеринга интерфейсов на клиенте.

Реализация учёта прослеживаемости в 1C:ERP.

Методика плавного перевода больших web-приложений с angular на react в условиях постоянного развития проекта.

Разработка механизма мониторинга производительности веб-приложений в пользовательских режимах работы.

Исследование транскриптома человека и предсказание изменений генных экспрессий.

Хранилище сеансовых данных.

Алгоритм определения родного языка человека по его письменной речи на английском языке.

Минимизация кассовых разрывов банковских счетов.

Разработка механизма универсального автоматического подключения к системам интернета вещей.

Постквантовая криптография.

Некоторые задачи статистического анализа продаж.

Реализация алгоритма квантовой электронно-цифровой подписи в контексте протокола TLSv1.3 на базе симулятора квантовых сетей Simulaqron.

Извлечение отношений на корпусе МЭК.

Сравнение жанрово-специфичных эмбеддингов с дообучением предобученных.

Исследование суперсходимости в задачах NLP.

Разрешение лексической неоднозначности на контекстных векторах на материале Oxford Dictionaries.

Фильтрация текстов социальных сетей.

Нетематическая классификация региона.

Сравнение self-attention и сверточного подходов в распознавании рукописных символов

ProxylessNAS для задачи семантической сегментации баркодов.

Многомасштабная семантическая сегментация для поиска текста в изображениях документов.

Нейросетевой детектор углов документа через регрессию ключевых точек.

Аугментация изображений символов с помощью вероятностной интерпретации.

Исследование методов активного обучения в применении к задаче извлечения полей из документов.

Детектор страны происхождения документа на основе изображения без использования распознанного текста.

Поиск значимых полей на изображениях визиток с помощью CNN.

Применение капсульных сетей для распознавания печатного и рукописного текста.

Непосредственная оптимизация математического ожидания метрики BLEU в задачах NLP.

Рекомендательная система для формирования персонального контента новостной ленты инвестиционного приложения.

Модель расходов на обслуживание клиентов POS.

Проектирование и автоматизация тестовой модели микросервиса на языке программирования Scala, выстраивание процесса CI/CD с помощью инструментов Allure, TeamCity, Jira.

Организация внутрисистемных транзакций между контрагентами энергетической системы на основе функциональной модели с использованием распределенного реестра (на примере «Интернета энергии»).

Оценка коммерческого потенциала сервиса адаптивно-предиктивной аналитики для розничной интернет-торговли (на примере рынка подарочной продукции).

Оценка коммерческого потенциала автоматизированных вертикальных ферм в городской среде.

Формирование массивов данных для обучения интеллектуальных диалоговых агентов методом геймификации.

Сетевой анализ развития технологий для обоснования решений в сфере научно-технической политики на примере "Интернета вещей" в Российской Федерации.

Тематическое моделирование технологического портфолио для оценки согласованности мер государственной технологической политики на примере технологий "Интернета вещей" в Российской Федерации.

Вывод на рынок продукта по распознаванию и обработке потока разнородных документов на основе технологий искусственного интеллекта.

Анализ организационно-финансовой поддержки субъектов малого и среднего технологического предпринимательства при оформлении прав на объекты интеллектуальной собственности в институтах развития.

4. Требования к оформлению текста выпускной квалификационной работы

Текст выпускной квалификационной работы оформляется в соответствии с требованиями Положения о выпускной квалификационной работе студентов МФТИ и Требованиями к содержанию и структуре, правила оформления ВКР (бакалаврских работ и магистерских диссертаций) студентов ФПМИ.

5. Процедура защиты выпускной квалификационной работы

Основные вопросы по защите ВКР регламентированы Положением о выпускной квалификационной работе студентов МФТИ.

Защита выпускной квалификационной работы проводится в форме представления доклада по результатам выполненного научного исследования (презентации). Продолжительность доклада обучающегося — не более 15 минут. По окончании доклада обучающийся отвечает на вопросы членов ГЭК без дополнительного времени на подготовку. Опрос обучающегося не может продолжаться более 1 астрономического часа.

Примерные вопросы членов ГЭК на защите ВКР:

- 1. Какими источниками Вы пользовались при поиске научной информации по теме Ваших исследований?
- 2. В каких изданиях опубликованы результаты Вашей работы?
- 3. Какие математические модели Вы использовали при обработке результатов исследований?
- 4. В чем состоит новизна результатов Ваших исследований? Как Вы охарактеризуете эту новизну: концепция, идея, обогащающая известную концепцию, или как новую методику, расширяющую границы познания?
- 5. На каких конференциях были представлены результаты Вашей работы?
- 6. Почему Вы выбрали для исследований именно эту методику?
- 7. Какова погрешность выбранного Вами метода анализа? Покажите интервал достоверности на графике.
- 8. Дайте характеристику выбранному Вами методу исследований.
- 9. Как проводилась обработка экспериментальных данных?
- 10. Какова достоверность полученных Вами результатов?
- 11. Сформулируйте практическую ценность Ваших исследований.
- 12. Каков Ваш вклад в результаты научных работ, опубликованных коллективом с Вашим участием?
- 13. Чем обоснована теоретическая значимость результатов Ваших исследований?
- 14. Чем обоснована практическая значимость результатов Ваших исследований?
- 15. Ваш прогноз на перспективы использования результатов Вашей работы.
- 16. Какие новые научные факты (факторы, гипотезы, тенденции, положения, идеи, доказательства) изложены в Вашей работе?
- 17. Удалось ли Вам в ВКР раскрыть существенные противоречия в известных представлениях на изучаемый Вами предмет (изучаемое явление, изучаемый процесс), если удалось, то в чем они заключается?
- 18. Каков результат сравнения Ваших авторских научных достижений с данными, представленных в независимых источниках по данной тематике?
- 19. Какое программное обеспечение Вы использовали при выполнении работы и обработке полученных результатов?
- 20. Как Вы обосновали в работе представительность выборочных совокупностей единиц наблюдения (измерения)?
- 21. Можете ли Вы заявить о наличии последовательного плана исследований по теме ВКР? Что не удалось Вам при его осуществлении?

6. Описание материально-технической базы, необходимой для проведения защиты выпускной квалификационной работы

Аудитория для проведения защиты выпускной квалификационной работы, оснащенная рабочими местами для обучающихся и государственной экзаменационной комиссии, доской, мультимедийным оборудованием.

7. Перечень рекомендуемой литературы

Основная литература

1. Подготовка и защита бакалаврской работы, магистерской диссертации, дипломного проекта [Электронный ресурс], учеб. пособие / Ю. Н. Новиков. — СПб., Лань, 2019.— URL: https://e.lanbook.com/book/122187 (дата обращения: 29.01.2021). - Полный текст (Режим доступа : из сети МФТИ / Удаленный доступ)

Дополнительная литература

1. Искусство писать научные статьи, научно-практическое руководство / Е. З. Мейлихов. — Долгопрудный, Интеллект, 2020.— URL: http://books.mipt.ru/book/301312 (дата обращения: 18.12.2020). - Полный текст (Режим доступа: из сети МФТИ / Удаленный доступ)

8. Рекомендации обучающимся по выполнению ВКР и подготовке к защите

При проведении ВКР и подготовке к ее защите следует руководствоваться Порядком проведения государственной итоговой аттестации по образовательным программам высшего образования в МФТИ.

В ходе написания ВКР студент обязан показать умение систематизировать, обобщать, закреплять и расширять теоретические знания и практические навыки; глубоко и самостоятельно исследовать конкретную проблему; применять полученные знания при решении конкретных задач профессиональной деятельности; разрабатывать практические рекомендации в исследуемой области; представлять результаты своей деятельности.

ВКР должна демонстрировать уровень подготовленности к самостоятельной профессиональной деятельности и представляет собой изложение результатов выполненной им НИР, связанной с решением задач того вида профессиональной деятельности, на который ориентирована осваиваемая образовательная программа. ВКР, представленная к защите, должна быть изложена с соблюдением принципов логичности, аргументированности, последовательности и основываться на изучении теоретического и фактического материалов, умении аргументировать собственные предложения, правильно пользоваться специальными терминами.

9. Методика и критерии оценки защиты выпускной квалификационной работы

Результаты защиты ВКР определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Оценки «отлично», «хорошо», «удовлетворительно» означают успешную защиту ВКР с присвоением соответствующей квалификации.

Оценка за ВКР выставляется ГЭК с учетом мнения научного руководителя, доклада выпускника и публичной дискуссии, а также с учетом следующих критериев:

- обоснованность актуальности темы исследования, соответствие содержания теме, полнота ее раскрытия;
- четкость структуры работы и логичность изложения материала, методологическая обоснованность исследования;
- эффективность использования избранных методов исследования для решения поставленной проблемы;
- владение научным стилем изложения;
- обоснованность и ценность полученных результатов исследования и выводов, возможность их применения в практической деятельности;
- соответствие формы представления ВКР всем требованиям, предъявляемым к оформлению работ;
- качество устного доклада, свободное владение материалом ВКР;
- глубина и точность ответов на вопросы, замечания и рекомендации во время защиты работы.

При оценке ВКР могут быть приняты во внимание публикации, авторские свидетельства и пр.

Критерии оценки защиты ВКР приведены в Положении о выпускной квалификационной работе студентов МФТИ.

10. Особенности защиты выпускной квалификационной работы для инвалидов и лиц с ограниченными возможностями здоровья

Для обучающихся из числа инвалидов государственная итоговая аттестация проводится с учетом особенностей их психофизического развития, их индивидуальных возможностей и состояния здоровья (далее – индивидуальные особенности).

- 10.1. При проведении ГИА обеспечивается соблюдение следующих общих требований:
- проведение государственной итоговой аттестации для инвалидов в одной аудитории совместно с обучающимися, не имеющими ограниченных возможностей здоровья, если это не создает трудностей для обучающихся при прохождении ГИА;
- присутствие в аудитории ассистента (ассистентов), оказывающего обучающимся инвалидам необходимую техническую помощь с учетом их индивидуальных особенностей (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с членами ГЭК);
- пользование необходимыми обучающимся инвалидам техническими средствами при прохождении ГИА с учетом их индивидуальных особенностей;
- обеспечение возможности беспрепятственного доступа обучающихся инвалидов в аудитории, туалетные и другие помещения, а также их пребывания в указанных помещениях.
- 10.2. По письменному заявлению обучающегося инвалида продолжительность выступления обучающегося при защите выпускной квалификационной работы не более чем на 15 минут.
- 10.3. Обучающийся инвалид не позднее, чем за 3 месяца до начала проведения ГИА подает письменное заявление о необходимости создания для него специальных условий при проведении государственных аттестационных испытаний с указанием особенностей его психофизического развития, индивидуальных возможностей и состояния здоровья. К заявлению прилагаются документы, подтверждающие наличие у обучающегося индивидуальных особенностей (при отсутствии указанных документов в дирекции института).

В заявлении обучающийся указывает на необходимость (отсутствие необходимости) присутствия ассистента на государственном аттестационном испытании, необходимость (отсутствие необходимости) увеличения продолжительности выступления при защите выпускной квалификационной работы по отношению к установленной продолжительности.